Characterizing the Hyperchaotic Dynamics of a Semiconductor Laser Subject to Optical Feedback Via Permutation Entropy

The time evolution of the output of a semiconductor laser subject to delayed optical feedback can exhibit high-dimensional chaotic fluctuations. In this contribution, our aim is to quantify the degree of unpredictability of this hyperchaotic time evolution. To that end, we estimate permutation entropy, a novel information-theory-derived quantifier particularly robust in a noisy environment. The permutation entropy is defined as a functional of a symbolic probability distribution, evaluated using the Bandt-Pompe recipe to assign a probability distribution function to the time series generated by the chaotic system. This measure quantifies the diversity of orderings present in the associated time series. In order to evaluate the performance of this novel quantifier, we compare with the results obtained by using a more standard chaos quantifier, namely the Kolmogorov-Sinai entropy. Here, we present numerical results showing that the permutation entropy, evaluated at specific time-scales involved in the chaotic regime of the semiconductor laser subject to optical feedback, give valuable information about the degree of unpredictability of the chaotic laser dynamics. The influence of additive observational noise on the proposed tool is also investigated.

[1]  Xiaoli Li,et al.  Estimating coupling direction between neuronal populations with permutation conditional mutual information , 2010, NeuroImage.

[2]  O A Rosso,et al.  Distinguishing noise from chaos. , 2007, Physical review letters.

[3]  Roy,et al.  Communication with chaotic lasers , 1998, Science.

[4]  O A Rosso,et al.  Quantifiers for randomness of chaotic pseudo-random number generators , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Jesper Mørk,et al.  Chaos in semiconductor lasers with optical feedback: theory and experiment , 1992 .

[6]  M. C. Soriano,et al.  Permutation-information-theory approach to unveil delay dynamics from time-series analysis. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Matthäus Staniek,et al.  Parameter Selection for Permutation Entropy Measurements , 2007, Int. J. Bifurc. Chaos.

[8]  Mathieu Sinn,et al.  Kolmogorov-Sinai entropy from the ordinal viewpoint , 2010 .

[9]  Miguel A. F. Sanjuán,et al.  True and false forbidden patterns in deterministic and random dynamics , 2007 .

[10]  Luciano Zunino,et al.  Forbidden patterns, permutation entropy and stock market inefficiency , 2009 .

[11]  G. Ouyang,et al.  Predictability analysis of absence seizures with permutation entropy , 2007, Epilepsy Research.

[12]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[13]  A. Plastino,et al.  Permutation entropy of fractional Brownian motion and fractional Gaussian noise , 2008 .

[14]  Cristina Masoller,et al.  Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Holger Kantz,et al.  Identifying and Modeling Delay Feedback Systems. , 1998, chao-dyn/9907019.

[16]  J. CHAOTIC ATTRACTORS OF AN INFINITE-DIMENSIONAL DYNAMICAL SYSTEM , 2002 .

[17]  Daan Lenstra,et al.  Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror , 1997 .

[18]  J. Kurths,et al.  Kolmogorov–Sinai entropy from recurrence times , 2009, 0908.3401.

[19]  P. Colet,et al.  Synchronization of chaotic semiconductor lasers: application to encoded communications , 1996, IEEE Photonics Technology Letters.

[20]  G. Keller,et al.  Entropy of interval maps via permutations , 2002 .

[21]  Fischer,et al.  High-dimensional chaotic dynamics of an external cavity semiconductor laser. , 1994, Physical review letters.

[22]  J. Ohtsubo Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback , 2002 .

[23]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[24]  Laurent Larger,et al.  Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations , 2003 .

[25]  Pengcheng Xu,et al.  Modified correlation entropy estimation for a noisy chaotic time series. , 2010, Chaos.

[26]  Daan Lenstra,et al.  Full length article A unifying view of bifurcations in a semiconductor laser subject to optical injection , 1999 .

[27]  M. C. Soriano,et al.  Time Scales of a Chaotic Semiconductor Laser With Optical Feedback Under the Lens of a Permutation Information Analysis , 2011, IEEE Journal of Quantum Electronics.

[28]  P. Colet,et al.  Security Implications of Open- and Closed-Loop Receivers in All-Optical Chaos-Based Communications , 2009, IEEE Photonics Technology Letters.

[29]  C. Bandt Ordinal time series analysis , 2005 .

[30]  Mariano Matilla-García,et al.  A Non-Parametric Independence Test Using Permutation Entropy , 2008 .

[31]  L M Hively,et al.  Detecting dynamical changes in time series using the permutation entropy. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Adonis Bogris,et al.  Complexity and synchronization in chaotic fiber-optic systems , 2008 .

[33]  Laurent Larger,et al.  Optical Cryptosystem Based on Synchronization of Hyperchaos Generated by a Delayed Feedback Tunable Laser Diode , 1998 .

[34]  P. Colet,et al.  Chaos-Based Optical Communications: Encryption Versus Nonlinear Filtering , 2010, IEEE Journal of Quantum Electronics.

[35]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[36]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[37]  Sarika Jalan,et al.  Randomness, chaos, and structure , 2009, Complex..

[38]  H. Kantz,et al.  Reconstruction of systems with delayed feedback: I. Theory , 2000 .

[39]  D. Lenstra,et al.  Dynamical behavior of a semiconductor laser with filtered external optical feedback , 1999 .

[40]  Silvano Donati,et al.  Synchronization of chaotic injected-laser systems and its application to optical cryptography , 1996 .

[41]  K. Keller,et al.  A standardized approach to the Kolmogorov-Sinai entropy , 2009 .

[42]  L. Voss,et al.  Using Permutation Entropy to Measure the Electroencephalographic Effects of Sevoflurane , 2008, Anesthesiology.

[43]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[44]  Adonis Bogris,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2006, SPIE/OSA/IEEE Asia Communications and Photonics.