eXtended finite element methods for thin cracked plates with Kirchhoff–Love theory

A modelization of cracked plates under bending loads in the XFEM framework is addressed. The Kirchhoff–Love model is considered. It is well suited for very thin plates commonly used for instance in aircraft structures. Reduced HCT and FVS elements are used for the numerical discretization. Two kinds of strategies are proposed for the enrichment around the crack tip with, for both of them, an enrichment area of fixed size (i.e. independant of the mesh size parameter). In the first one, each degree of freedom inside this area is enriched with the nonsmooth functions that describe the asymptotic displacement near the crack tip. The second strategy consists in introducing these functions in the finite element basis with a single degree of freedom for each one. An integral matching is then used in order to ensure the C1 continuity of the solution at the interface between the enriched and the non-enriched areas. Finally, numerical convergence results for these strategies are presented and discussed.

[1]  Ph. Destuynder,et al.  Sur une interpretation math'ematique de l''int'egrale de Rice en th'eorie de la rupture fragile , 1981 .

[2]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[3]  Jean-François Remacle,et al.  A substructured FE‐shell/XFE‐3D method for crack analysis in thin‐walled structures , 2007 .

[4]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Alan T. Zehnder,et al.  Crack tip stress fields for thin, cracked plates in bending, shear and twisting: A comparison of plate theory and three-dimensional elasticity theory solutions , 2000 .

[7]  Zhigang Suo,et al.  Partition of unity enrichment for bimaterial interface cracks , 2004 .

[8]  Stéphane Bordas,et al.  Enriched finite elements and level sets for damage tolerance assessment of complex structures , 2006 .

[9]  P. Destuynder,et al.  Une théorie asymptotique des plaques minces en élasticité linéaire , 1986 .

[10]  Bhushan Lal Karihaloo,et al.  XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi‐materials , 2004 .

[11]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[12]  T. Belytschko,et al.  Analysis of Finite Strain Anisotropic Elastoplastic Fracture in Thin Plates and Shells , 2006 .

[13]  Serge Nicaise,et al.  Optimal convergence analysis for the extended finite element method , 2011 .

[14]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[15]  Philippe G. Ciarlet,et al.  JUSTIFICATION OF THE TWO-DIMENSIONAL LINEAR PLATE MODEL. , 1979 .

[16]  C. Hui,et al.  A theory for the fracture of thin plates subjected to bending and twisting moments , 1993 .

[17]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[18]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[19]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[20]  Ted Belytschko,et al.  Analysis of fracture in thin shells by overlapping paired elements , 2006 .

[21]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[22]  P. Laborde,et al.  A non-conformal eXtended Finite Element approach: Integral matching Xfem , 2011 .

[23]  Leszek Marcinkowski A Mortar Finite Element Method for Fourth Order Problems in Two Dimensions with Lagrange Multipliers , 2005, SIAM J. Numer. Anal..

[24]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[25]  Elie Chahine Etude mathématique et numérique de méthodes d'éléments finis étendues pour le calcul en domaines fissurés , 2008 .

[26]  Nicolas Moës,et al.  X-FEM, de nouvelles frontières pour les éléments finis , 2002 .

[27]  Ted Belytschko,et al.  Modeling fracture in Mindlin–Reissner plates with the extended finite element method , 2000 .