Some methods for evaluating the optimality of elements in matroids with ill-known weights

In this paper a class of matroidal combinatorial optimization problems with imprecise weights of elements is considered. The imprecise weights are modeled by intervals and fuzzy intervals. The concepts of possible and necessary optimality under imprecision are recalled. Some efficient methods for evaluating the possible and necessary optimality of elements in the interval-valued problems are proposed. Some efficient algorithms for computing the exact degrees of possible and necessary optimality of elements in the fuzzy-valued problems are designed.

[1]  Naoki Katoh,et al.  Resource Allocation Problems , 1998 .

[2]  Didier Dubois,et al.  Gradual Numbers and Their Application to Fuzzy Interval Analysis , 2008, IEEE Transactions on Fuzzy Systems.

[3]  Pawel Zielinski,et al.  The computational complexity of the criticality problems in a network with interval activity times , 2002, Eur. J. Oper. Res..

[4]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[5]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[6]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[7]  Didier Dubois,et al.  A generalized vertex method for computing with fuzzy intervals , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[8]  Hande Yaman,et al.  The robust spanning tree problem with interval data , 2001, Oper. Res. Lett..

[9]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[10]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[11]  Adam Kasperski,et al.  On combinatorial optimization problems on matroids with uncertain weights , 2007, Eur. J. Oper. Res..

[12]  Pascal Van Hentenryck,et al.  A Constraint Satisfaction Approach to the Robust Spanning Tree Problem with Interval Data , 2002, UAI.

[13]  Didier Dubois,et al.  Gradual elements in a fuzzy set , 2008, Soft Comput..

[14]  Toshihide Ibaraki,et al.  Resource allocation problems - algorithmic approaches , 1988, MIT Press series in the foundations of computing.

[15]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[16]  James G. Oxley,et al.  Matroid theory , 1992 .