MEGARA: a new generation optical spectrograph for GTC

MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma. MEGARA offers two IFU fiber bundles, one covering 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB) and another one covering 8.5x6.7 arcsec2 with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB). The MEGARA MOS mode will allow observing up to 100 objects in a region of 3.5x3.5 arcmin2 around the two IFU bundles. Both the LCB IFU and MOS capabilities of MEGARA will provide intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3650-9700ÅÅ. These values become RFWHM~7,000, 13,500, and 21,500 when the SCB is used. A mechanism placed at the pseudo-slit position allows exchanging the three observing modes and also acts as focusing mechanism. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts an E2V231-84 4kx4k CCD. The UCM (Spain) leads the MEGARA Consortium that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). MEGARA is being developed under a contract between GRANTECAN and UCM. The detailed design, construction and AIV phases are now funded and the instrument should be delivered to GTC before the end of 2016.

D. Ferrusca | A. L. Aguerri | E. Bertone | V. Villar | A. Gil de Paz | E. Carrasco | J. Iglesias-Páramo | R. Cedazo | X. Arrillaga | M. A. Carrera | E. Castillo-Domínguez | B. Lefort | M. Maldonado | I. Martínez-Delgado | E. Mujica | G. Páez | S. Pascual | A. Sánchez-Penim | E. Sánchez-Blanco | M. Velázquez | J. Cenarro | M. Chávez | J. Guichard | N. Huélamo | J. Jiménez-Vicente | C. Kehrig | I. Márquez | J. Masegosa | J. Méndez-Abreu | C. Muñoz-Tuñón | M. Peimbert | P. G. Pérez-González | M. Rodríguez | J. M. Rodríguez-Espinosa | D. Rosa-González | J. Sánchez-Almeida | P. Sánchez-Blázquez | S. F. Sánchez | A. Sarajedini | S. Simón-Díaz | E. Terlevich | S. Torres-Peimbert | Y. Tsamis | O. Vega | J. Gallego | S. Tulloch | A. Castillo-Morales | E. González-Guardia | I. Morales Durán | A. Pérez-Calpena | F. Serena | D. Barrado y Naváscues | M. García | R. Gúzman | E. Pérez Montero | L. Rodríguez-Merino | C. Sánchez Contreras | J. M. Vílchez | M. L. García-Vargas | M. C. Eliche-Moral | R. A. Marino | J. Zamorano | N. Cardiel | A. Cava | A. Herrero | D. Hughes | Y. D. Mayya | M. Mollá | F. M. Sánchez Moreno | S. Silich | G. Tenorio-Tagle | R. Terlevich | I. Trujillo | R. Terlevich | V. Villar | E. Terlevich | S. Tulloch | E. Carrasco | S. Pascual | C. Kehrig | J. Zamorano | Y. Tsamis | M. Garcia | I. Trujillo | A. Aguerri | R. Marino | M. Mollá | N. Cardiel | Á. Castillo-Morales | J. Méndez-Abreu | G. Páez | A. Cava | P. Pérez-González | D. Ferrusca | D. Rosa-González | S. Simón-Díaz | P. Sánchez-Blázquez | J. Masegosa | J. Iglesias-Páramo | G. Tenorio-Tagle | A. Sarajedini | O. Vega | C. Muñoz-Tuñón | J. Rodríguez-Espinosa | M. Peimbert | C. Sánchez Contreras | M. Chavez | M. García-Vargas | A. Pérez-Calpena | E. Sánchez-Blanco | E. Bertone | I. Márquez | R. Cedazo | A. Herrero | M. Velázquez | J. Cenarro | S. Torres-Peimbert | J. Guichard | E. Pérez Montero | S. Silich | Y. Mayya | J. Sanchez-Almeida | M. Maldonado | R. Guzmán | J. Gallego | A. Gil de Paz | J. Vílchez | L. Rodríguez-Merino | N. Huelamo | D. Barrado y Navascués | I. Martínez-Delgado | J. Jiménez-vicente | B. Lefort | E. Castillo-Dominguez | M. Rodríguez | S. Sanchez | M. Carrera | X. Arrillaga | E. Mújica | A. Sánchez-Penim | I. Morales Durán | E. González-Guardia | F. Serena | D. Hughes | F. S. Sánchez Moreno

[1]  Armando Gil de Paz,et al.  Inverse analysis method to optimize the optic tolerances of MEGARA: the future IFU and multi-object spectrograph for GTC , 2014, Astronomical Telescopes and Instrumentation.

[2]  A. Gil de Paz,et al.  MEGARA spectrograph optics , 2012, Other Conferences.

[3]  Esperanza Carrasco,et al.  Project management for complex ground-based instruments: MEGARA plan , 2014, Astronomical Telescopes and Instrumentation.

[4]  Heikki Salo,et al.  The Spitzer Survey of Stellar Structure in Galaxies ( S 4 G ) , 2010, 1010.1592.

[5]  Esperanza Carrasco,et al.  MEGARA control system , 2013 .

[6]  otros,et al.  MEGARA: the future IFU and MOS of the 10.4 M GTC , 2013 .

[7]  D. Ferrusca,et al.  MEGARA cryostat advanced design , 2014, Astronomical Telescopes and Instrumentation.

[8]  John Van Derlofske,et al.  Computer modeling of LED light pipe systems for uniform display illumination , 2001 .

[9]  D. Alter PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC , 2016 .

[10]  D. Ferrusca,et al.  MEGARA: the future optical IFU and multi-object spectrograph for the 10.4m GTC telescope , 2012, Other Conferences.

[11]  otros,et al.  The Herschel Lensing Survey (HLS): Overview , 2010 .

[12]  A. Gil de Paz,et al.  MEGARA optical manufacturing process , 2014, Astronomical Telescopes and Instrumentation.

[13]  María Luisa García-Vargas,et al.  System engineering at the MEGARA project , 2014, Astronomical Telescopes and Instrumentation.

[14]  Armando Gil de Paz,et al.  MEGARA main optics opto-mechanics , 2014, Astronomical Telescopes and Instrumentation.

[15]  María Luisa García-Vargas,et al.  MEGARA fiber bundles , 2014, Astronomical Telescopes and Instrumentation.