Potential and Reaction Mechanism of Li−Mg−Al−N−H System for Reversible Hydrogen Storage

Complex metal hydrides are attracting much attention as a class of candidate materials for hydrogen storage. Lithium-based complex hydrides, including lithium aluminum hydrides (LiAlH_4 and Li_3AlH_6), are among the most promising materials, owing to their high hydrogen contents. In the present work, we investigated the dehydrogenation/rehydrogenation reactions of a combined system of Li_3AlH_6 and Mg(NH_2)_2, which has a theoretical hydrogen capacity of 6.5 wt %. Thermogravimetric analysis of hydrogenated 2/3Al−Li_2Mg(NH)2 (doped with 4 wt % TiCl_3) indicated that a large amount of hydrogen (∼6.2 wt %) can be stored under 300 °C and 172 bar of hydrogen pressure. The FT-IR and NMR results showed that the reaction between Li_3AlH_6 and Mg(NH_2)_2 is reversible. Further, a short-cycle experiment has demonstrated that the new combined material system of alanates and amides can maintain its hydrogen storage capacity upon cycling of the dehydrogenation/rehydrogenation reactions.

[1]  P. Norby,et al.  Desorption of LiAlH4 with Ti- and V-based additives , 2004 .

[2]  W. Grochala,et al.  Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. , 2004, Chemical reviews.

[3]  A. Andreasen Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride , 2006 .

[4]  V. Pecharsky,et al.  Solid-state 27Al NMR investigation of thermal decomposition of LiAlH4 , 2004 .

[5]  H. Fujii,et al.  Hydrogen absorption properties of Li-Mg-N-H system , 2005 .

[6]  Craig M. Jensen,et al.  Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material , 2001 .

[7]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[8]  A. Pedersen,et al.  Dehydrogenation kinetics of as-received and ball-milled LiAlH4 , 2005 .

[9]  V. Balema,et al.  Missing pieces of the puzzle or about some unresolved issues in solid state chemistry of alkali metal aluminohydrides. , 2005, Physical chemistry chemical physics : PCCP.

[10]  Tetsuo Sakai,et al.  Reversible Hydrogen Storage via Titanium-Catalyzed LiAlH4 and Li3AlH6 , 2001 .

[11]  Y. Kojima,et al.  IR characterizations of lithium imide and amide , 2005 .

[12]  V. Pecharsky,et al.  Mechanochemical transformations in Li(Na)AlH4–Li(Na)NH2 systems , 2007 .

[13]  Ping-Ou Chen,et al.  Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system , 2005 .

[14]  G. Sandrock,et al.  Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates , 2002 .

[15]  Vitalij K. Pecharsky,et al.  Solid State Phase Transformations in LiAlH4 During High-Energy Ball-Milling , 2000 .

[16]  Vitalij K. Pecharsky,et al.  Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling , 2001 .

[17]  Gil-Jae Lee,et al.  Reaction products between TiCl3 catalyst and Li3AlH6 during mechanical mixing , 2006 .

[18]  R. Juza,et al.  IR-Spektren von Amiden und Imiden zwei- und dreiwertiger Metalle , 1974 .

[19]  R. Brand,et al.  Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials , 2000 .

[20]  Young Joo Lee,et al.  Lithium MAS NMR studies of cathode materials for lithium-ion batteries , 2003 .

[21]  Andrew E. Bennett,et al.  Heteronuclear decoupling in rotating solids , 1995 .

[22]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[23]  Ping-Ou Chen,et al.  Reversible Hydrogen Storage by a Li–Al–N–H Complex , 2007 .

[24]  O. Løvvik,et al.  Crystal structure and thermodynamic stability of the lithium alanates LiAlH 4 and Li 3 AlH 6 , 2004 .

[25]  H. Jacobs,et al.  Infrared and Raman studies on the internal modes of lithium amide , 1995 .

[26]  Physiochemical pathway for cyclic dehydrogenation and rehydrogenation of LiAlH4. , 2006, Journal of the American Chemical Society.

[27]  T. Osakai,et al.  Clarification of the Mechanism of Interfacial Electron-Transfer Reaction between Ferrocene and Hexacyanoferrate(III) by Digital Simulation of Cyclic Voltammograms , 2003 .

[28]  S. Hino,et al.  New Metal−N−H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage , 2004 .

[29]  Craig M. Jensen,et al.  Preparation of Ti-Doped Sodium Aluminum Hydride from Mechanical Milling of NaH/Al with Off-the-Shelf Ti Powder , 2004 .

[30]  J. Shim,et al.  Thermodynamic calculation of LiH ↔ Li3AlH6 ↔ LiAlH4 reactions , 2006 .

[31]  Zhigang Zak Fang,et al.  A new Li-Al-N-H system for reversible hydrogen storage. , 2006, The journal of physical chemistry. B.

[32]  K. L. Tan,et al.  Interaction between Lithium Amide and Lithium Hydride , 2003 .

[33]  Craig M. Jensen,et al.  Hydrogen cycling behavior of zirconium and titanium–zirconium-doped sodium aluminum hydride , 1999 .

[34]  S. Sickafoose,et al.  Thermodynamic and structural characterization of the Mg–Li–N–H hydrogen storage system , 2006 .