Rational design of tryptophan hydroxylation 1 for improving 5-Hydroxytryptophan production.

[1]  I. Anishchenko,et al.  The trRosetta server for fast and accurate protein structure prediction , 2021, Nature Protocols.

[2]  Jianyi Yang,et al.  Improved Protein Structure Prediction Using a New Multi‐Scale Network and Homologous Templates , 2021, Advanced science.

[3]  Dongming Lan,et al.  Structure-Guided Rational Design of a Mono- and Diacylglycerol Lipase from Aspergillus oryzae: A Single Residue Mutant Increases the Hydrolysis Ability. , 2021, Journal of agricultural and food chemistry.

[4]  Jianyi Yang,et al.  Improved protein structure prediction using predicted interresidue orientations , 2019, Proceedings of the National Academy of Sciences.

[5]  J. Lian,et al.  Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli. , 2018, Metabolic engineering.

[6]  Bishnu P. Subedi,et al.  Mutagenesis of an Active-Site Loop in Tryptophan Hydroxylase Dramatically Slows the Formation of an Early Intermediate in Catalysis. , 2018, Journal of the American Chemical Society.

[7]  Pengfei Li,et al.  MCPB.py: A Python Based Metal Center Parameter Builder , 2016, J. Chem. Inf. Model..

[8]  K. Kino,et al.  Enhanced synthesis of 5-hydroxy-l-tryptophan through tetrahydropterin regeneration , 2013, AMB Express.

[9]  K. M. Roberts,et al.  Mechanisms of tryptophan and tyrosine hydroxylase , 2013, IUBMB life.

[10]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[11]  M. Zavatti,et al.  Anxiolytic-like effect of Griffonia simplicifolia Baill. seed extract in rats. , 2011, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[12]  H. Christensen,et al.  Expression, Purification and Enzymatic Characterization of the Catalytic Domains of Human Tryptophan Hydroxylase Isoforms , 2009, The protein journal.

[13]  K. Hodgson,et al.  Spectroscopy and kinetics of wild-type and mutant tyrosine hydroxylase: mechanistic insight into O2 activation. , 2009, Journal of the American Chemical Society.

[14]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[15]  P. Harris,et al.  Crystal structure of tryptophan hydroxylase with bound amino acid substrate. , 2008, Biochemistry.

[16]  M. Bader,et al.  Influence of human tryptophan hydroxylase 2 N‐ and C‐terminus on enzymatic activity and oligomerization , 2007, Journal of neurochemistry.

[17]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[18]  K. Vrana,et al.  Functional Domains of Human Tryptophan Hydroxylase 2 (hTPH2)* , 2006, Journal of Biological Chemistry.

[19]  J. Loftis,et al.  Serotonin a la carte: supplementation with the serotonin precursor 5-hydroxytryptophan. , 2006, Pharmacology & therapeutics.

[20]  Lawrence Que,et al.  The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes , 2005, JBIC Journal of Biological Inorganic Chemistry.

[21]  J. Haavik,et al.  Different properties of the central and peripheral forms of human tryptophan hydroxylase , 2005, Journal of neurochemistry.

[22]  A. Gronenborn,et al.  Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris. , 2004, Protein expression and purification.

[23]  P. Fitzpatrick Mechanism of aromatic amino acid hydroxylation. , 2003, Biochemistry.

[24]  M. Bader,et al.  A unique central tryptophan hydroxylase isoform. , 2003, Biochemical pharmacology.

[25]  T. Flatmark,et al.  2.0A resolution crystal structures of the ternary complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine or L-norleucine: substrate specificity and molecular motions related to substrate binding. , 2003, Journal of molecular biology.

[26]  Katsuhiko Yamamoto,et al.  Genetic engineering of Escherichia coli for production of tetrahydrobiopterin. , 2003, Metabolic engineering.

[27]  R. Stevens,et al.  Three-dimensional structure of human tryptophan hydroxylase and its implications for the biosynthesis of the neurotransmitters serotonin and melatonin. , 2002, Biochemistry.

[28]  K. Hodgson,et al.  X-ray absorption spectroscopic investigation of the resting ferrous and cosubstrate-bound active sites of phenylalanine hydroxylase. , 2002, Biochemistry.

[29]  T. Flatmark,et al.  High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin. , 2001, Journal of molecular biology.

[30]  T. Birdsall,et al.  5-Hydroxytryptophan: a clinically-effective serotonin precursor. , 1998, Alternative medicine review : a journal of clinical therapeutic.

[31]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[32]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[33]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[34]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[35]  Vidar R. Jensen,et al.  The Aromatic Amino Acid Hydroxylase Mechanism: A Perspective From Computational Chemistry , 2010 .

[36]  P. Fitzpatrick,et al.  Tetrahydropterin-dependent amino acid hydroxylases. , 1999, Annual review of biochemistry.

[37]  F. Sicuteri,et al.  Fibromyalgia and migraine, two faces of the same mechanism. Serotonin as the common clue for pathogenesis and therapy. , 1996, Advances in experimental medicine and biology.