Factor models and variable selection in high-dimensional regression analysis
暂无分享,去创建一个
[1] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[2] K. J. Utikal,et al. Inference for Density Families Using Functional Principal Component Analysis , 2001 .
[3] M. Hallin,et al. The Generalized Dynamic-Factor Model: Identification and Estimation , 2000, Review of Economics and Statistics.
[4] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[5] P. Sarda,et al. CLT in functional linear regression models , 2005, math/0508073.
[6] F. Dias,et al. Determining the number of factors in approximate factor models with global and group-specific factors , 2008 .
[7] J. Bai,et al. Inferential Theory for Factor Models of Large Dimensions , 2003 .
[8] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[9] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[10] S. Geer,et al. Adaptive Lasso for High Dimensional Regression and Gaussian Graphical Modeling , 2009, 0903.2515.
[11] P. Sarda,et al. Smoothing splines estimators for functional linear regression , 2009, 0902.4344.
[12] P. Sarda,et al. Functional linear model , 1999 .
[13] J. Ramsay,et al. Some Tools for Functional Data Analysis , 1991 .
[14] S. Geer. HIGH-DIMENSIONAL GENERALIZED LINEAR MODELS AND THE LASSO , 2008, 0804.0703.
[15] V. Koltchinskii. The Dantzig selector and sparsity oracle inequalities , 2009, 0909.0861.
[16] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[17] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[18] J. Stock,et al. Forecasting Using Principal Components From a Large Number of Predictors , 2002 .
[19] P. Hall,et al. On properties of functional principal components analysis , 2006 .
[20] J. Bai,et al. Panel Data Models With Interactive Fixed Effects , 2009 .
[21] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[22] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[23] A. Cuevas,et al. Linear functional regression: The case of fixed design and functional response , 2002 .
[24] Larry A. Wasserman,et al. Time varying undirected graphs , 2008, Machine Learning.
[25] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[26] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[27] Jean Boivin,et al. Monetary Policy in a Data-Rich Environment , 2001 .