Characterization of a novel carbohydrate esterase 7 family acetyl xylan esterase from Thermobifida halotolerans YIM 90462T

[1]  Zhoutong Sun,et al.  Biosynthesis of β-lactam nuclei in yeast. , 2022, Metabolic engineering.

[2]  B. Henrissat,et al.  The carbohydrate-active enzyme database: functions and literature , 2021, Nucleic Acids Res..

[3]  Liyan Song,et al.  Antibiotics and antibiotic resistance genes in landfills: A review. , 2021, The Science of the total environment.

[4]  Zunxi Huang,et al.  Biotechnological Aspects of Salt-Tolerant Xylanases: A Review. , 2021, Journal of agricultural and food chemistry.

[5]  Sudhir Kumar,et al.  MEGA11: Molecular Evolutionary Genetics Analysis Version 11 , 2021, Molecular biology and evolution.

[6]  N. Tufenkji,et al.  Cranberry-Derived Proanthocyanidins Potentiate β-Lactam Antibiotics against Resistant Bacteria , 2021, Applied and Environmental Microbiology.

[7]  A. Joachimiak,et al.  Structural genomics and the Protein Data Bank , 2021, The Journal of biological chemistry.

[8]  L. M. Lima,et al.  β-lactam antibiotics: An overview from a medicinal chemistry perspective. , 2020, European journal of medicinal chemistry.

[9]  Myoung-Uoon Jang,et al.  Functional Expression and Characterization of Acetyl Xylan Esterases CE Family 7 from Lactobacillus antri and Bacillus halodurans , 2020, Journal of microbiology and biotechnology.

[10]  Zunxi Huang,et al.  Characterization of EstZY: A new acetylesterase with 7-aminocephalosporanic acid deacetylase activity from Alicyclobacillus tengchongensis. , 2020, International journal of biological macromolecules.

[11]  Marc Baaden,et al.  Molecular Graphics: Bridging Structural Biologists and Computer Scientists. , 2019, Structure.

[12]  He Huang,et al.  Designer bioemulsifiers based on combinations of different polysaccharides with the novel emulsifying esterase AXE from Bacillus subtilis CICC 20034 , 2019, Microbial Cell Factories.

[13]  Seung Chul Shin,et al.  Crystal structure and functional characterization of a cold-active acetyl xylan esterase (PbAcE) from psychrophilic soil microbe Paenibacillus sp. , 2018, PloS one.

[14]  Wei Liao,et al.  Progress in One-pot Bioconversion of Cephalosporin C to 7-Aminocephalosporanic Acid. , 2018, Current pharmaceutical biotechnology.

[15]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[16]  B. Sewell,et al.  Structural Characterization and Directed Evolution of a Novel Acetyl Xylan Esterase Reveals Thermostability Determinants of the Carbohydrate Esterase 7 Family , 2018, Applied and Environmental Microbiology.

[17]  J. C. Mateos-Díaz,et al.  Carbohydrate Esterases: An Overview. , 2018, Methods in molecular biology.

[18]  Yong-guan Zhu,et al.  Review of antibiotic resistance in China and its environment. , 2018, Environment international.

[19]  N. Manoj,et al.  Structural role of a conserved active site cis proline in the Thermotoga maritima acetyl esterase from the carbohydrate esterase family 7 , 2017, Proteins.

[20]  E. Master,et al.  Colorimetric Detection of Acetyl Xylan Esterase Activities. , 2017, Methods in molecular biology.

[21]  E. Brown,et al.  Antibacterial drug discovery in the resistance era , 2016, Nature.

[22]  Junjun Li,et al.  Identification and Characterization of a New 7-Aminocephalosporanic Acid Deacetylase from Thermophilic Bacterium Alicyclobacillus tengchongensis , 2015, Journal of bacteriology.

[23]  D. Wei,et al.  One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase , 2015 .

[24]  He Huang,et al.  A novel cephalosporin deacetylating acetyl xylan esterase from Bacillus subtilis with high activity toward cephalosporin C and 7-aminocephalosporanic acid , 2014, Applied Microbiology and Biotechnology.

[25]  Mitchell D. Miller,et al.  Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima , 2012, Proteins.

[26]  C. Abbas,et al.  Biochemical Characterization and Relative Expression Levels of Multiple Carbohydrate Esterases of the Xylanolytic Rumen Bacterium Prevotella ruminicola 23 Grown on an Ester-Enriched Substrate , 2011, Applied and Environmental Microbiology.

[27]  F. Gil-Ortiz,et al.  The crystal structure of the cephalosporin deacetylating enzyme acetyl xylan esterase bound to paraoxon explains the low sensitivity of this serine hydrolase to organophosphate inactivation. , 2011, The Biochemical journal.

[28]  R. Sterner,et al.  Hyperthermostable acetyl xylan esterase , 2009, Microbial biotechnology.

[29]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[30]  Lei Sun,et al.  Crystal structure and biochemical properties of a novel thermostable esterase containing an immunoglobulin-like domain. , 2009, Journal of molecular biology.

[31]  Shukun Tang,et al.  Thermobifida halotolerans sp. nov., isolated from a salt mine sample, and emended description of the genus Thermobifida. , 2008, International journal of systematic and evolutionary microbiology.

[32]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[33]  K. Mitsushima,et al.  Batch production of deacetyl 7-aminocephalosporanic acid by immobilized cephalosporin-C deacetylase , 2004, Applied Microbiology and Biotechnology.

[34]  K. Mitsushima,et al.  High-level expression, purification, and some properties of a recombinant cephalosporin-C deacetylase. , 1999, Journal of bioscience and bioengineering.

[35]  J. Wiegel,et al.  Isolation, analysis, and expression of two genes from Thermoanaerobacterium sp. strain JW/SL YS485: a beta-xylosidase and a novel acetyl xylan esterase with cephalosporin C deacetylase activity , 1997, Journal of bacteriology.

[36]  K. Mitsushima,et al.  Gene cloning, nucleotide sequence, and expression of a cephalosporin-C deacetylase from Bacillus subtilis , 1995, Applied and environmental microbiology.