Finite layer analysis of layered elastic materials using a flexibility approach. Part 1—Strip loadings

It is well known that the analysis of a horizontally layered elastic material can be considerably simplified by the introduction of a Fourier or Hankel transform and the application of the finite layer approach. The conventional finite layer (and finite element) stiffness approach breaks down when applied to incompressible materials. In this paper these difficulties are overcome by the introduction of an exact finite layer flexibility matrix. This flexibility matrix can be assembled in much the same way as the stiffness matrix and does not suffer from the disadvantage of becoming infinite for an incompressible material. The method is illustrated by a series of examples drawn from the geotechnical area, where it is observed that many natural and man-made deposits are horizontally layered and where it is necessary to consider incompressible behaviour for undrained conditions. For abstract of part 2 see TRIS no. 378330. (Author/TRRL)