Motility powered by supramolecular springs and ratchets.

Not all biological movements are caused by molecular motors sliding along filaments or tubules. Just as springs and ratchets can store or release energy and rectify motion in physical systems, their analogs can perform similar functions in biological systems. The energy of biological springs is derived from hydrolysis of a nucleotide or the binding of a ligand, whereas biological ratchets are powered by Brownian movements of polymerizing filaments. However, the viscous and fluctuating cellular environment and the mechanochemistry of soft biological systems constrain the modes of motion generated and the mechanisms for energy storage, control, and release.

[1]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[2]  H. Hoffmann-Berling,et al.  Der Mechanismus eines neuen, von der Muskelkontraktion verschiedenen Kontraktionszyklus , 1958 .

[3]  R. D. Allen,et al.  Primitive motile systems in cell biology , 1964 .

[4]  W. Amos,et al.  Reversible Mechanochemical Cycle in the Contraction of Vorticella , 1971, Nature.

[5]  H. Ishikawa,et al.  THE POLYMERIZATION OF ACTIN: ITS ROLE IN THE GENERATION OF THE ACROSOMAL PROCESS OF CERTAIN ECHINODERM SPERM , 1973, Journal of Cell Biology.

[6]  L. G. Tilney,et al.  Actin filaments in the acrosomal reaction of Limulus sperm. Motion generated by alterations in the packing of the filaments , 1975, The Journal of cell biology.

[7]  A. Wegner,et al.  Head to tail polymerization of actin. , 1976, Journal of molecular biology.

[8]  D. DeRosier,et al.  A change in the twist of the actin-containing filaments occurs during the extension of the acrosomal process in Limulus sperm. , 1980, Journal of molecular biology.

[9]  D L Caspar,et al.  Movement and self-control in protein assemblies. Quasi-equivalence revisited. , 1980, Biophysical journal.

[10]  R. Margolis,et al.  Microtubule treadmills—possible molecular machinery , 1981, Nature.

[11]  T. L. Hill,et al.  Bioenergetics and kinetics of microtubule and actin filament assembly-disassembly. , 1982, International review of cytology.

[12]  D. DeRosier,et al.  A change in twist of actin provides the force for the extension of the acrosomal process in limulus sperm: the false-discharge reaction , 1982, The Journal of cell biology.

[13]  S Inoué,et al.  Acrosomal reaction of Thyone sperm. II. The kinetics and possible mechanism of acrosomal process elongation , 1982, The Journal of cell biology.

[14]  G. Oster,et al.  A mechanical model for elongation of the acrosomal process in Thyone sperm , 1982 .

[15]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[16]  E. Taylor,et al.  Cell Motility , 1986, Journal of Cell Science.

[17]  R. Nicklas,et al.  The forces that move chromosomes in mitosis. , 1988, Annual review of biophysics and biophysical chemistry.

[18]  D. Portnoy,et al.  Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes , 1989, The Journal of cell biology.

[19]  F. Arisaka,et al.  Structural studies of the contractile tail sheath protein of bacteriophage T4. 2. Structural analyses of the tail sheath protein, Gp18, by limited proteolysis, immunoblotting, and immunoelectron microscopy. , 1990, Biochemistry.

[20]  Julie A. Theriot,et al.  The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization , 1992, Nature.

[21]  Masayuki Tokita,et al.  Phase Transitions of Gels , 1992 .

[22]  AC Tose Cell , 1993, Cell.

[23]  C S Peskin,et al.  Cellular motions and thermal fluctuations: the Brownian ratchet. , 1993, Biophysical journal.

[24]  T. Roberts,et al.  The motile major sperm protein (MSP) of Ascaris suum forms filaments constructed from two helical subfilaments. , 1994, Journal of molecular biology.

[25]  U. Aebi,et al.  Structural and physicochemical analysis of the contractile MM phage tail and comparison with the bacteriophage T4 tail. , 1994, Journal of structural biology.

[26]  R. T. Tregear,et al.  Movement and force produced by a single myosin head , 1995, Nature.

[27]  P. Matsudaira,et al.  Sequence and domain organization of scruin, an actin-cross-linking protein in the acrosomal process of Limulus sperm , 1995, The Journal of cell biology.

[28]  M. Bornens,et al.  Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. , 1996, Journal of cell science.

[29]  T. Roberts,et al.  Reconstitution In Vitro of the Motile Apparatus from the Amoeboid Sperm of Ascaris Shows That Filament Assembly and Bundling Move Membranes , 1996, Cell.

[30]  B. Yurke,et al.  Measurement of the force-velocity relation for growing microtubules. , 1997, Science.

[31]  P. Matsudaira,et al.  Modification of Cys-837 identifies an actin-binding site in the beta-propeller protein scruin. , 1997, Molecular biology of the cell.

[32]  S. Block,et al.  Kinesin: What Gives? , 1998, Cell.

[33]  J. O. Simpson,et al.  Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles - a review , 1998 .

[34]  D J DeRosier,et al.  The Turn of the Screw: The Bacterial Flagellar Motor , 1998, Cell.

[35]  S. Biggins,et al.  The Yeast Centrin, Cdc31p, and the Interacting Protein Kinase, Kic1p, Are Required for Cell Integrity , 1998, The Journal of cell biology.

[36]  Henrik Flyvbjerg,et al.  Modeling elastic properties of microtubule tips and walls , 1998, European Biophysics Journal.

[37]  H. E. Buhse,et al.  Cloning and Expression of a cDNA Encoding a Vorticella convallaria Spasmin: an EF‐Hand Calcium‐Binding Protein , 1999, The Journal of eukaryotic microbiology.

[38]  Gary G. Borisy,et al.  Arp2/3 Complex and Actin Depolymerizing Factor/Cofilin in Dendritic Organization and Treadmilling of Actin Filament Array in Lamellipodia , 1999, The Journal of cell biology.

[39]  Marie-France Carlier,et al.  Reconstitution of actin-based motility of Listeria and Shigella using pure proteins , 1999, Nature.

[40]  J A Theriot,et al.  Motility of ActA protein-coated microspheres driven by actin polymerization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  H Okamoto,et al.  Rubber-like elasticity and volume changes in the isolated spasmoneme of giant Zoothamnium sp. under Ca2+-induced contraction. , 1999, Biophysical journal.

[42]  G. Oster,et al.  The polymerization ratchet model explains the force-velocity relation for growing microtubules , 1999, European Biophysics Journal.

[43]  D. L. Taylor,et al.  The actin-based nanomachine at the leading edge of migrating cells. , 1999, Biophysical journal.

[44]  R M Berry,et al.  The bacterial flagella motor. , 1999, Advances in microbial physiology.

[45]  D. J. Olbris,et al.  An analysis of actin delivery in the acrosomal process of thyone. , 1999, Biophysical journal.

[46]  V. Noireaux,et al.  Growing an actin gel on spherical surfaces. , 2000, Biophysical journal.