Surface tension of chain molecules through a combination of the gradient theory with the CPA EoS

Abstract Despite the interest in systems containing non-associating compounds such as alkanes and fluoroalkanes or associating compounds like alkanols, their vapor–liquid interfaces have received little quantitative attention. Aiming at modeling the interfacial tensions of several families of chain molecules, a combination of the density gradient theory of fluid interfaces with the Cubic-Plus-Association (CPA) equation of state was developed. The density gradient theory is based on the phase equilibria of the fluid phases separated by the interface, for what an adequate equation of state is required. In this work, the series of the n -alkanes, n -perfluoroalkanes and n -alkanols were studied in a broad temperature range. It will be shown that even for non-associating compounds such as the n -alkanes, CPA can improve considerably the estimation of vapor pressures and coexisting phase densities, which are important for the accuracy of the surface tensions obtained through the density gradient theory. The surface tensions of the compounds studied were accurately described with a global average deviation of 0.5%. As it will be shown, the combination of the density gradient theory with the CPA EoS also allowed very good predictions of the surface tensions of some binary mixtures. A discussion on the regression and selection of pure component parameters is also reported.

[1]  M. Michelsen,et al.  Application of the Cubic-Plus-Association (CPA) Equation of State to Cross-Associating Systems , 2005 .

[2]  E. A. Guggenheim The Principle of Corresponding States , 1945 .

[3]  W. V. Steele,et al.  Vapor pressure, heat capacity, and density along the saturation line, measurements for cyclohexanol, 2-cyclohexen-1-one, 1,2-dichloropropane, 1,4-di-tert-butylbenzene, ({+-})-2-ethylhexanoic acid, 2-(methylamino)ethanol, perfluoro-n-heptane, and sulfolane , 1997 .

[4]  Luís M. N. B. F. Santos,et al.  Thermodynamic properties of perfluoro-n-octane , 2004 .

[5]  M. Michelsen,et al.  Application of the Cubic-Plus-Association (CPA) Equation of State to Complex Mixtures with Aromatic Hydrocarbons , 2006 .

[6]  Josep Pàmies Corominas,et al.  Bulk and interfacial properties of chain fluids: a molecular modelling approach , 2003 .

[7]  Erling Halfdan Stenby,et al.  Corresponding‐states and parachor models for the calculation of interfacial tensions , 1997 .

[8]  E. Voutsas,et al.  Correlation of liquid-liquid equilibria for alcohol/hydrocarbon mixtures using the CPA equation of state , 1997 .

[9]  R. Kobayashi,et al.  Direct vapor pressure measurements of ten n-alkanes m the 10-C28 range , 1994 .

[10]  Correlation and prediction of interface tension for fluid mixtures: An approach based on cubic equations of state with the wong-sandler mixing rule , 2005 .

[11]  R. Evans The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids , 1979 .

[12]  E. Voutsas,et al.  Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory , 2000 .

[13]  B. Wohlfarth,et al.  Surface tension of pure liquids and binary liquid mixtures , 2015 .

[14]  D. Ambrose Reference values of vapour pressure the vapour pressures of benzene and hexafluorobenzene , 1981 .

[15]  Y. Duan,et al.  Gradient theory modeling of surface tension for pure fluids and binary mixtures , 2007 .

[16]  J. Arons,et al.  Simultaneous prediction of phase equilibria, interfacial tension and concentration profiles , 1993 .

[17]  J. Straub,et al.  The role of surface tension for two-phase heat and mass transfer in the absence of gravity , 1993 .

[18]  L. E. Scriven,et al.  Semiempirical theory of surface tension of binary systems , 1980 .

[19]  A. Nikolov,et al.  Foams, thin films and surface rheological properties , 1992 .

[20]  G. Pollack,et al.  Solubility of xenon in perfluoroalkanes: Temperature dependence and thermodynamics , 1988 .

[21]  H. Ted Davis,et al.  Modified Van der Waals theory of fluid interfaces , 1975 .

[22]  E. Jimenez,et al.  Density, Surface Tension, and Refractive Index of Octane + 1-Alkanol Mixtures at T = 298.15 K , 2003 .

[23]  Luís M. N. B. F. Santos,et al.  Densities and vapor pressures of highly fluorinated compounds , 2005 .

[24]  D. Ambrose,et al.  The vapour pressure of octafluorotoluene , 1981 .

[25]  J. S. Rowlinson,et al.  Translation of J. D. van der Waals' “The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density” , 1979 .

[26]  Lourdes F. Vega,et al.  Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures: An approach based on cubic equations of state with improved mixing rules , 2005 .

[27]  M. T. D. Gama,et al.  Surface tension of simple mixtures: comparison between theory and experiment , 1989 .

[28]  E. Voutsas,et al.  Prediction of Phase Equilibria in Binary Aqueous Systems Containing Alkanes, Cycloalkanes, and Alkenes with the Cubic-plus-Association Equation of State , 1998 .

[29]  G. Cady,et al.  Physical Properties of Perfluoro-n-hexane and Perfluoro-2-methylpentane , 1952 .

[30]  Michael L. Michelsen,et al.  Physical properties from association models , 2001 .

[31]  I. Marrucho,et al.  Surface Tension of Decane Binary and Ternary Mixtures with Eicosane, Docosane, and Tetracosane , 2005 .

[32]  J. Arons,et al.  Application of the Peng-Robinson equation of state to calculate interfacial tensions and profiles at vapour-liquid interfaces , 1993 .

[33]  J. Hales,et al.  Liquid densities from 293 to 490 K of eight fluorinated aromatic compounds , 1974 .

[34]  S. Enders,et al.  Calculation of surface properties of pure fluids using density gradient theory and SAFT-EOS , 2000 .

[35]  C. Miqueu,et al.  Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces , 2004 .

[36]  Dimitrios P. Tassios,et al.  An Equation of State for Associating Fluids , 1996 .

[37]  D. R. Douslin,et al.  Pressure measurements in the 0.01-30 torr range with an inclined-piston gauge , 1965 .

[38]  D. Fontana,et al.  Enthalpies of Vaporization of a Homologous Series of n-Alkanes Determined from Vapor Pressure Measurements , 1994 .

[39]  E. Voutsas,et al.  Vapor-liquid equilibria for systems using the CPA Equation of state , 1997 .

[40]  Christopher M. A. Parlett,et al.  Reports of meetings , 1967 .

[41]  A. Michelsen,et al.  Extension of the Cubic-Plus-Association Equation of State to Glycol−Water Cross-Associating Systems , 2003 .

[42]  T. Findlay Vapor pressures of fluorobenzenes from 5 to 50.deg.C , 1969 .

[43]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[44]  E. Stenby,et al.  A Linear Gradient Theory Model for Calculating Interfacial Tensions of Mixtures , 1996 .

[45]  Erich J. Windhab,et al.  Drop formation in a co-flowing ambient fluid , 2004 .

[46]  C. Panayiotou Interfacial tension and interfacial profiles: an equation-of-state approach. , 2003, Journal of colloid and interface science.

[47]  I. Marrucho,et al.  Modeling vapor-liquid interfaces with the gradient theory in combination with the CPA equation of state , 2005 .

[48]  A. Yodh,et al.  Wetting and contact lines of micrometer-sized ellipsoids. , 2006, Physical review letters.

[49]  G. Kontogeorgis,et al.  Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures , 1999 .

[50]  I. Marrucho,et al.  Solubility of oxygen in substituted perfluorocarbons , 2005 .

[51]  João A. P. Coutinho,et al.  Prediction of viscosities and surface tensions of fuels using a new corresponding states model , 2006 .

[52]  A. Graciaa,et al.  Modeling of the Surface Tension of Multicomponent Mixtures with the Gradient Theory of Fluid Interfaces , 2005 .

[53]  M. Sahimi,et al.  Surface tension of binary liquid–vapor mixtures: A comparison of mean-field and scaling theories , 1991 .

[54]  L. E. Scriven,et al.  An approximate theory of interfacial tensions of multicomponent systems: Applications to binary liquid‐vapor tensions , 1978 .

[55]  R. G. Bedford,et al.  Some Physical Properties of Perfluoro-n-hexane , 1958 .

[56]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules , 1990 .

[57]  M. Michelsen,et al.  Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Associating Systems , 2006 .

[58]  I. Marrucho,et al.  Modeling the Liquid−Liquid Equilibria of Water + Fluorocarbons with the Cubic-Plus-Association Equation of State , 2007 .

[59]  L. Girifalco,et al.  A Theory for the Estimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension , 1957 .

[60]  S. B. Kiselev,et al.  Generalized corresponding states model for bulk and interfacial properties in pure fluids and fluid mixtures , 2003 .

[61]  T. N. Smith,et al.  Interfacial tension and spreading coefficient under reservoir conditions , 1998 .

[62]  S. Nordholm,et al.  Generalized van der Waals theory. III. The prediction of hard sphere structure , 1980 .

[63]  John A. Young,et al.  Vapor pressures and triple point temperatures for several pure fluorocarbons , 1967 .

[64]  D. Macleod On a relation between surface tension and density , 1923 .

[65]  F. Debeaufort,et al.  Importance of Surface Tension Characterization for Food, Pharmaceutical and Packaging Products: A Review , 2006, Critical reviews in food science and nutrition.

[66]  J. Arons,et al.  Interfacial tensions of fluid mixtures with polar and associating components , 1998 .

[67]  Yigui Li,et al.  Study on Surface Tension for Non-polar and Associating Fluids Based on Density Functional Theory , 2003 .

[68]  J. Prausnitz,et al.  Phase Equilibria for Systems Containing Hydrocarbons, Water, and Salt: An Extended Peng−Robinson Equation of State , 1998 .

[69]  F. Fowkes IDEAL TWO-DIMENSIONAL SOLUTIONS. III. PENETRATION OF HYDROCARBONS IN MONOLAYERS , 1962 .

[70]  J. F. Counsell,et al.  Thermodynamic properties of fluorine compounds. Part 2.—Physical and thermodynamic properties of hexafluorobenzene , 1965 .

[71]  R. Chirico,et al.  The vapor pressure of n-alkanes revisited. New high-precision vapor pressure data on n-decane, n-eicosane, and n-octacosane , 1989 .

[72]  Alain Graciaa,et al.  Modelling of the surface tension of pure components with the gradient theory of fluid interfaces: a simple and accurate expression for the influence parameters , 2003 .

[73]  G. D. Oliver,et al.  Some Physical Properties of Hexadecafluoroheptane , 1951 .

[74]  B. Zwolinski,et al.  Vapor Pressure and Boiling Points of Normal Alkanes, C21 to C100. , 1966 .

[75]  S. Toxvaerd Surface Structure of a Square‐Well Fluid , 1972 .