A Survey of Rigorous Results on Random Schrödinger Operators for Amorphous Solids

Electronic properties of amorphous or non-crystalline disordered solids are often modelled by one-particle Schrodinger operators with random potentials which are ergodic with respect to the full group of Euclidean translations. We give a short, reasonably self-contained survey of rigorous results on such operators, where we allow for the presence of a constant magnetic field. We compile robust properties of the integrated density of states like its self-averaging, uniqueness and leading high-energy growth. Results on its leading low-energy fall-off, that is, on its Lifshits tail, are then discussed in case of Gaussian and non-negative Poissonian random potentials. In the Gaussian case with a continuous and non-negative covariance function we point out that the integrated density of states is locally Lipschitz continuous and present explicit upper bounds on its derivative, the density of states. Available results on Anderson localization concern the almost-sure pure-point nature of the low-energy spectrum in case of certain Gaussian random potentials for arbitrary space dimension. Moreover, under slightly stronger conditions all absolute spatial moments of an initially localized wave packet in the pure-point spectral subspace remain almost surely finite for all times. In case of one dimension and a Poissonian random potential with repulsive impurities of finite range, it is known that the whole energy spectrum is almost surely only pure point.

[1]  L. Pastur,et al.  Behavior of the density of states in one-dimensional disordered systems near the edges of the spectrum , 1975 .

[2]  I. S. Gradshteyn Table of Integrals, Series and Products, Corrected and Enlarged Edition , 1980 .

[3]  F. Martinelli,et al.  On absence of diffusion near the bottom of the spectrum for a random Schrödinger operator onL2(ℝ)+ , 1984 .

[4]  G. Stolz,et al.  Anderson Localization for Random Schrödinger Operators with Long Range Interactions , 1998 .

[6]  N. Macris,et al.  Density of states of random Schrödinger operators with a uniform magnetic field , 1992 .

[7]  A. Klein,et al.  Localization for random Schrödinger operators with correlated potentials , 1991 .

[8]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[9]  P. Stollmann Lifshitz Asymptotics via Linear Coupling of Disorder , 1999 .

[10]  P. Elbau,et al.  Equality of Bulk and Edge Hall Conductance Revisited , 2002, math-ph/0203019.

[11]  J. Bellissard,et al.  The noncommutative geometry and the quantum Hall e ect , 1994, cond-mat/9411052.

[12]  The Absolute Continuity of the Integrated Density¶of States for Magnetic Schrödinger Operators¶with Certain Unbounded Random Potentials , 2001, math-ph/0105046.

[13]  Alexander Figotin,et al.  Localization of classical waves I: Acoustic waves , 1996 .

[14]  Upper bounds on the density of states of single Landau levels broadened by Gaussian random potentials , 2000, math-ph/0011010.

[15]  Lifshits Tails Caused by Anisotropic Decay: The Emergence of a Quantum-Classical Regime , 2003, math-ph/0310033.

[16]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[17]  F. Wegner Exact density of states for lowest Landau level in white noise potential superfield representation for interacting systems , 1983 .

[18]  C. Itzykson,et al.  DENSITY OF STATES IN THE PRESENCE OF A STRONG MAGNETIC FIELD AND RANDOM IMPURITIES , 1984 .

[19]  Joel I. Gersten,et al.  The Physics and Chemistry of Materials , 2001 .

[20]  A. Klein,et al.  A characterization of the Anderson metal-insulator transport transition , 2004 .

[21]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[22]  N. Macris,et al.  Localisation in a single band approximation to random Schroedinger operators in a magnetic field , 1995 .

[23]  Serguei Tcheremchantsev How to Prove Dynamical Localization , 2001 .

[24]  L. Pastur On the distribution of the eigenvalues of the Schrödinger equation with a random potential , 1972 .

[25]  Classical magnetic Lifshits tails in three space dimensions: impurity potentials with slow anisotropic decay , 2002, math-ph/0212078.

[26]  A. Klein,et al.  A new proof of localization in the Anderson tight binding model , 1989 .

[27]  B. Kramer,et al.  Localization: theory and experiment , 1993 .

[28]  Dynamical properties of random Schrödinger operators , 1999, math-ph/9907002.

[29]  K. Broderix,et al.  Exact results on Landau-level broadening , 1991 .

[30]  L. Pastur,et al.  Introduction to the Theory of Disordered Systems , 1988 .

[31]  Fredholm indices and the phase diagram of quantum Hall systems , 2000, math-ph/0008040.

[32]  L. Pastur Spectra of Random Self Adjoint Operators , 1973 .

[33]  L. Pastur,et al.  A pure point spectrum of the stochastic one-dimensional schrödinger operator , 1977 .

[34]  Alexander L. Efros,et al.  Electronic Properties of Doped Semi-conductors , 1984 .

[35]  M. Lax,et al.  Impurity-Band Tails in the High-Density Limit. I. Minimum Counting Methods , 1966 .

[36]  Simón,et al.  What is localization? , 1995, Physical review letters.

[37]  J. Zak,et al.  MAGNETIC TRANSLATION GROUP , 1964 .

[38]  J. M. Luttinger New Variational Method with Applications to Disordered Systems , 1976 .

[39]  On spectra of random Schrödinger operators with magnetic fields , 1994 .

[40]  G. Stolz Strategies in localization proofs for one-dimensional random Schrödinger operators , 2002 .

[41]  A. Sommerfeld,et al.  Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik , 1928 .

[42]  Continuous integral kernels for unbounded Schrödinger semigroups and their spectral projections , 2002, math-ph/0209020.

[43]  J. Zittartz,et al.  Theory of Bound States in a Random Potential , 1990 .

[44]  I. Suslov REVIEWS OF TOPICAL PROBLEMS: Development of a (4-ε)-dimensional theory for the density of states of a disordered system near the Anderson transition , 1998 .

[45]  Werner Kirsch,et al.  On the density of states of Schrodinger operators with a random potential , 1982 .

[46]  Solutions, Spectrum, and Dynamica for Schr\"odinger Operators on Infinite Domains , 1999, math/9906021.

[47]  Peter Stollmann,et al.  Caught by Disorder: Bound States in Random Media , 2001 .

[48]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[49]  L. Pastur Behavior of some Wiener integrals as t→∞ and the density of states of Schrödinger equations with random potential , 1977 .

[50]  L. Pastur Spectral properties of disordered systems in the one-body approximation , 1980 .

[51]  C. Kittel Introduction to solid state physics , 1954 .

[52]  E. Kane,et al.  Thomas-Fermi Approach to Impure Semiconductor Band Structure , 1963 .

[53]  J. Pulé,et al.  Infinite degeneracy for a Landau Hamiltonian with Poisson impurities , 1997 .

[54]  M. Aizenman,et al.  Communications in Mathematical Physics Finite-Volume Fractional-Moment Criteria for Anderson Localization , 2001 .

[55]  K. Efetov,et al.  Supersymmetry in Disorder and Chaos , 1996 .

[56]  N. Ueki Wegner Estimates and Localization for Gaussian Random Potentials , 2004 .

[57]  A. Klein,et al.  Bootstrap Multiscale Analysis and Localization¶in Random Media , 2001 .

[58]  Spectral Localization by Gaussian Random Potentials in Multi-Dimensional Continuous Space , 1999, math-ph/9912025.

[59]  M. Aizenman LOCALIZATION AT WEAK DISORDER: SOME ELEMENTARY BOUNDS , 1994 .

[60]  Srinivasa Varadhan,et al.  Asymptotics for the wiener sausage , 1975 .

[61]  F. Martinelli,et al.  Introduction to the mathematical theory of Anderson localization , 1986 .

[62]  S. Warzel,et al.  Poissonian Obstacles with Gaussian Walls Discriminate Between Classical and Quantum Lifshits Tailing in Magnetic Fields , 1999 .

[63]  P. Stollmann,et al.  Multi-scale analysis implies strong dynamical localization , 1999, math-ph/9912002.

[64]  Sumathi Rao,et al.  FRACTIONAL QUANTUM HALL EFFECT , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.

[65]  L. Pastur On the Schrödinger equation with a random potential , 1971 .

[66]  T. Spencer Localization for random and quasiperiodic potentials , 1988 .

[67]  A. Iwatsuka,et al.  The uniqueness of the integrated density of states for the Schrödinger operators with magnetic fields , 2001 .

[68]  L. Landau Diamagnetismus der Metalle , 1930 .

[69]  L. Pastur,et al.  ON THE SPECTRUM OF THE ONE-DIMENSIONAL SCHRÖDINGER EQUATION WITH A RANDOM POTENTIAL , 1970 .

[70]  The fate of lifshits tails in magnetic fields , 1995, cond-mat/9503057.

[71]  J. Pulé,et al.  The spectrum of a magnetic Schrödinger operator with randomly located delta impurities , 2000 .

[72]  R. Zallen,et al.  The Physics of Amorphous Solids: ZALLEN:PHYSICS OF AMORPHO O-BK , 2005 .

[73]  Michael Aizenman,et al.  Moment analysis for localization in random Schrödinger operators , 2003, math-ph/0308023.

[74]  J. Chalker,et al.  An exactly solvable model of the disordered two-dimensional electron gas in a strong magnetic field , 1986 .

[75]  A. Sznitman Brownian motion, obstacles, and random media , 1998 .

[76]  John Ziman,et al.  Models of disorder , 1979 .

[77]  M. Aizenman,et al.  Finite-volume Criteria for Anderson Localization , 1999 .

[78]  B. Simon Absence of ballistic motion , 1990 .

[79]  A. Klein,et al.  On the density of states for random potentials in the presence of a uniform magnetic field , 1985 .

[80]  H. Linke,et al.  Symmetry of two-terminal nonlinear electric conduction. , 2003, Physical Review Letters.

[81]  Klaus von Klitzing,et al.  Quantized hall effect , 1983 .

[82]  Remarks on the Relation between Quantum Dynamics and Fractal Spectra , 1997 .

[83]  L. Erdős Lifschitz tail in a magnetic field: the nonclassical regime , 1998 .

[84]  Landau Hamiltonians with random potentials: Localization and the density of states , 1994, funct-an/9410005.

[85]  W. Amrein Non-Relativistic Quantum Dynamics , 1981 .

[86]  R. Joynt The Quantum Hall Effect , 1988 .

[87]  Schreiber,et al.  Density of states of disordered systems. , 1994, Physical review. B, Condensed matter.

[88]  N. P. Kovalenko,et al.  Physics of Amorphous Metals , 2001 .

[89]  S. Kotani On Asymptotic Behaviour of the Spectra of a One-Dimensional Hamiltonian with a Certain Random Coefficient , 1976 .

[90]  B. Simon,et al.  Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .

[91]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[92]  X. Fernique Regularite des trajectoires des fonctions aleatoires gaussiennes , 1975 .

[93]  S. Girvin,et al.  Introduction to the Theory of the Integer Quantum Hall Effect , 1995 .

[94]  H. Kunz The quantum hall effect for electrons in a random potential , 1987 .

[95]  F. Martinelli,et al.  Large deviations and Lifshitz singularity of the integrated density of states of random Hamiltonians , 1983 .

[96]  Lori R Hilden,et al.  Physics of amorphous solids. , 2004, Journal of pharmaceutical sciences.

[97]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[98]  Y. Last Quantum Dynamics and Decompositions of Singular Continuous Spectra , 1995 .

[99]  A. Klein,et al.  Explicit finite volume criteria for localization in continuous random media and applications , 2003 .

[100]  Werner Kirsch,et al.  Random Schrödinger operators a course , 1989 .

[101]  EXISTENCE AND UNIQUENESS OF THE INTEGRATED DENSITY OF STATES FOR SCHRÖDINGER OPERATORS WITH MAGNETIC FIELDS AND UNBOUNDED RANDOM POTENTIALS , 2000, math-ph/0010013.

[102]  B. Simon,et al.  Schrödinger Semigroups , 2007 .

[103]  J. Hajdu Theory of the Integer Quantum Hall Effect — An Introductory Survey , 1987 .

[104]  G. Stolz Localization for random Schrödinger operators with Poisson potential , 1995 .

[105]  F. Wegner Bounds on the density of states in disordered systems , 1981 .

[106]  I. Lifshitz,et al.  The energy spectrum of disordered systems , 1964 .

[107]  Localization bounds for an electron gas , 1996, cond-mat/9603116.

[108]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[109]  M. Lifshits Gaussian Random Functions , 1995 .

[110]  B. Simon,et al.  A diamagnetic inequality for semigroup differences , 2004 .

[111]  J. Combes,et al.  Landau Hamiltonians with Unbounded Random Potentials , 1997 .

[112]  I. Lifshitz,et al.  Reviews of Topical Problems: Energy Spectrum Structure and Quantum States of Disordered Condensed Systems , 1965 .

[113]  Leschke,et al.  Partition function and the density of states for an electron in the plane subjected to a random potential and a magnetic field. , 1989, Physical review. B, Condensed matter.

[114]  M. Aizenman,et al.  Constructive fractional-moment criteria for localization in random operators , 2000 .

[115]  F. Martinelli,et al.  On the ergodic properties of the specrum of general random operators. , 1982 .

[116]  T. Mine The uniqueness of the integrated density of states for the Schrödinger operators for the Robin boundary conditions , 2002 .

[117]  Density of states for high landau levels and random potential , 1987 .

[118]  On completeness of random exponentials in the Bargmann-Fock space , 2001 .

[119]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[120]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[121]  X. Fernique,et al.  Ecole D'Ete de Probabilites de Saint-Flour Iv 1974 , 1975 .

[122]  D. Mattis,et al.  The Theory of Magnetism I , 1981 .

[123]  K. Benedict The fate of the Lifshitz tails of high Landau levels , 1987 .

[124]  Continuity properties of Schrödinger semigroups with magnetic fields , 1998, math-ph/9808004.

[125]  S. Nakao On the spectral distribution of the Schrödinger operator with random potential , 1977 .

[126]  J. M. Luttinger,et al.  Density of electronic energy levels in disordered systems , 1975 .

[127]  Wei-Min Wang Microlocalization, Percolation, and Anderson Localization for the Magnetic Schrödinger Operator with a Random Potential , 1997 .

[128]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[129]  F. Germinet,et al.  Dynamical Localization for Discrete and Continuous Random Schrr Odinger Operators , 1997 .

[130]  L. Pastur,et al.  Lifshitz Tails for Random Schrödinger Operators¶with Negative Singular Poisson Potential , 1999 .

[131]  W. Fischer,et al.  Existence of the Density of States for Multi-Dimensional¶Continuum Schrödinger Operators with¶Gaussian Random Potentials , 1997 .

[132]  Bodo Huckestein,et al.  Scaling theory of the integer quantum Hall effect , 1995, cond-mat/9501106.

[133]  On the essential selfadjointness of stochastic Schrodinger operators , 1983 .

[134]  H. Matsumoto On the integrated density of states for the Schrödinger operators with certain random electromagnetic potentials , 1993 .

[135]  V. Fock Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld , 1928 .

[136]  Characterization of the Spectrum of the Landau Hamiltonian with Delta Impurities , 1999, math-ph/9904035.

[137]  N. Macris,et al.  The nature of the spectrum for a Landau Hamiltonian with delta impurities , 1997 .

[138]  J. Combes,et al.  Localization for Some Continuous, Random Hamiltonians in d-Dimensions , 1994 .

[139]  Nevill Mott,et al.  Electrons in disordered structures , 2001 .

[140]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .

[141]  I. Kukushkin,et al.  Two-dimensional electron density of states in a transverse magnetic field , 1988 .

[142]  Integrated density of states and Wegner estimates for random Schr , 2003, math-ph/0307062.