Constructing adapted lattice rules using problem-dependent criteria

We describe a new software tool named Lattice Builder, designed to construct lattice point sets for quasi-Monte Carlo integration via randomly-shifted lattice rules. This tool permits one to search for good lattice parameters in terms of various uniformity criteria, for an arbitrary number of points and arbitrary dimension. It also constructs lattices that are extensible in the number of points and in the dimension. A numerical illustration is given.

[1]  Pierre L'Ecuyer,et al.  Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.

[2]  P. L’Ecuyer,et al.  On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .

[3]  Pierre L'Ecuyer,et al.  On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules , 2009 .

[4]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[5]  E. E. Myshetskaya,et al.  Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..

[6]  Ian H. Sloan,et al.  Efficient Weighted Lattice Rules with Applications to Finance , 2006, SIAM J. Sci. Comput..

[7]  Xiaoqun Wang,et al.  Constructing Robust Good Lattice Rules for Computational Finance , 2007, SIAM J. Sci. Comput..

[8]  Michael B. Giles,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[9]  A. Owen,et al.  Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .

[10]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[11]  Dirk Nuyens,et al.  Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..

[12]  Henryk Wozniakowski,et al.  When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..

[13]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[14]  Dirk Nuyens,et al.  Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..

[15]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[16]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[17]  W. Schachermayer,et al.  Multilevel quasi-Monte Carlo path simulation , 2009 .

[18]  Ilya M. Sobol,et al.  On Global Sensitivity Indices: Monte Carlo Estimates Affected by Random Errors , 2007, Monte Carlo Methods Appl..

[19]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[20]  Fred J. Hickernell,et al.  The existence of good extensible rank-1 lattices , 2003, J. Complex..

[21]  Frances Y. Kuo,et al.  Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..

[22]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[23]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[24]  Pierre L'Ecuyer,et al.  Variance bounds and existence results for randomly shifted lattice rules , 2012, J. Comput. Appl. Math..

[25]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[26]  Henryk Wozniakowski,et al.  Liberating the weights , 2004, J. Complex..

[27]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[28]  Dirk Nuyens,et al.  Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .