Constructing adapted lattice rules using problem-dependent criteria
暂无分享,去创建一个
[1] Pierre L'Ecuyer,et al. Quasi-Monte Carlo methods with applications in finance , 2008, Finance Stochastics.
[2] P. L’Ecuyer,et al. On Figures of Merit for Randomly-Shifted Lattice Rules , 2012 .
[3] Pierre L'Ecuyer,et al. On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules , 2009 .
[4] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[5] E. E. Myshetskaya,et al. Monte Carlo estimators for small sensitivity indices , 2008, Monte Carlo Methods Appl..
[6] Ian H. Sloan,et al. Efficient Weighted Lattice Rules with Applications to Finance , 2006, SIAM J. Sci. Comput..
[7] Xiaoqun Wang,et al. Constructing Robust Good Lattice Rules for Computational Finance , 2007, SIAM J. Sci. Comput..
[8] Michael B. Giles,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[9] A. Owen,et al. Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .
[10] F. J. Hickernell. Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .
[11] Dirk Nuyens,et al. Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points , 2006, J. Complex..
[12] Henryk Wozniakowski,et al. When Are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integrals? , 1998, J. Complex..
[13] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[14] Dirk Nuyens,et al. Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces , 2006, Math. Comput..
[15] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[16] P. L’Ecuyer,et al. Variance Reduction via Lattice Rules , 1999 .
[17] W. Schachermayer,et al. Multilevel quasi-Monte Carlo path simulation , 2009 .
[18] Ilya M. Sobol,et al. On Global Sensitivity Indices: Monte Carlo Estimates Affected by Random Errors , 2007, Monte Carlo Methods Appl..
[19] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[20] Fred J. Hickernell,et al. The existence of good extensible rank-1 lattices , 2003, J. Complex..
[21] Frances Y. Kuo,et al. Component-by-Component Construction of Good Lattice Rules with a Composite Number of Points , 2002, J. Complex..
[22] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[23] Michael B. Giles,et al. Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..
[24] Pierre L'Ecuyer,et al. Variance bounds and existence results for randomly shifted lattice rules , 2012, J. Comput. Appl. Math..
[25] Art B. Owen,et al. Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.
[26] Henryk Wozniakowski,et al. Liberating the weights , 2004, J. Complex..
[27] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[28] Dirk Nuyens,et al. Fast Component-by-Component Construction, a Reprise for Different Kernels , 2006 .