LES/PDF based modeling of soot–turbulence interactions in turbulent flames

Abstract A large eddy simulation (LES)/probability density function (PDF) approach is used to describe the small-scale soot–turbulence–chemistry interactions. The PDF approach directly evolves the joint statistics of the gas-phase scalars and a set of moments of the soot number density function. This LES/PDF approach is then used to simulate a turbulent natural gas jet diffusion flame. Since the PDF equation is high dimensional, a Lagrangian method formulated in cylindrical coordinates is coupled to the Eulerian solution technique for the LES flow equations. The LES/PDF simulations show that soot formation is highly intermittent and is always restricted to the fuel-rich region of the flow. The PDF of soot moments has a wide spread leading to a large subfilter variance. Further, the conditional statistics of soot moments conditioned on mixture fraction and reaction progress variable show strong correlation between the gas phase composition and soot moments.

[1]  Heinz Pitsch,et al.  Unsteady Flamelet Modeling of Soot Formation in Turbulent Diffusion Flames , 2000 .

[2]  P. Moin,et al.  Large-eddy simulation of turbulent confined coannular jets , 1996, Journal of Fluid Mechanics.

[3]  Stephen B. Pope,et al.  Filtered mass density function for large-eddy simulation of turbulent reacting flows , 1999, Journal of Fluid Mechanics.

[4]  Michael E. Mueller,et al.  LES model for sooting turbulent nonpremixed flames , 2012 .

[5]  Stephen B. Pope Self-conditioned fields for large-eddy simulations of turbulent flows , 2010, Journal of Fluid Mechanics.

[6]  Michael E. Mueller,et al.  Modeling the oxidation-induced fragmentation of soot aggregates in laminar flames , 2011 .

[7]  S. Pope,et al.  Filtered density function for large eddy simulation of turbulent reacting flows , 1998 .

[8]  Stephen B. Pope,et al.  A particle formulation for treating differential diffusion in filtered density function methods , 2006, J. Comput. Phys..

[9]  Heinz Pitsch,et al.  Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion , 2005 .

[10]  Heinz Pitsch,et al.  Large eddy simulation subfilter modeling of soot-turbulence interactions , 2011 .

[11]  Stephen B. Pope,et al.  A Monte Carlo Method for the PDF Equations of Turbulent Reactive Flow , 1981 .

[12]  T. H. van der Meer,et al.  Effects of Small- and Large-Scale Structures in a Piloted Jet Diffusion Flame , 1999 .

[13]  Heinz Pitsch,et al.  Numerical errors in the computation of subfilter scalar variance in large eddy simulations , 2009 .

[14]  Qing Nian Chan,et al.  Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas , 2009 .

[15]  R. S. Barlow,et al.  Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame , 2000 .

[16]  Heinz Pitsch,et al.  High order conservative finite difference scheme for variable density low Mach number turbulent flows , 2007, J. Comput. Phys..

[17]  P. Moin,et al.  Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion , 2004, Journal of Fluid Mechanics.

[18]  Jacqueline H. Chen,et al.  Application of PDF mixing models to premixed flames with differential diffusion , 2012 .

[19]  C. Hoogendoorn,et al.  Comparative experimental and numerical investigation of a piloted turbulent natural-gas diffusion flame , 1994 .

[20]  M. Frenklach,et al.  A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames , 1997 .

[21]  S. Frankel,et al.  A Hybrid Large Eddy Simulation/Filtered Mass Density Function for the Calculation of Strongly Radiating Turbulent Flames , 2009 .

[22]  V. Raman,et al.  A posteriori analysis of numerical errors in subfilter scalar variance modeling for large eddy simulation , 2011 .

[23]  M. Frenklach Method of moments with interpolative closure , 2002 .

[24]  Michael E. Mueller,et al.  On the formation and early evolution of soot in turbulent nonpremixed flames , 2010 .

[25]  Heinz Pitsch,et al.  A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry , 2007 .

[26]  Heinz Pitsch,et al.  Hybrid Method of Moments for modeling soot formation and growth , 2009 .

[27]  H. Pitsch,et al.  A consistent chemical mechanism for oxidation of substituted aromatic species , 2010 .

[28]  J. Hewson,et al.  A-priori analysis of conditional moment closure modeling of a temporal ethylene jet flame with soot formation using direct numerical simulation , 2009 .

[29]  Michael E. Mueller,et al.  A joint volume-surface model of soot aggregation with the method of moments , 2009 .

[30]  R. Lindstedt,et al.  Joint-scalar transported PDF modeling of soot formation and oxidation , 2005 .