The Geoglobus acetivorans Genome: Fe(III) Reduction, Acetate Utilization, Autotrophic Growth, and Degradation of Aromatic Compounds in a Hyperthermophilic Archaeon

ABSTRACT Geoglobus acetivorans is a hyperthermophilic anaerobic euryarchaeon of the order Archaeoglobales isolated from deep-sea hydrothermal vents. A unique physiological feature of the members of the genus Geoglobus is their obligate dependence on Fe(III) reduction, which plays an important role in the geochemistry of hydrothermal systems. The features of this organism and its complete 1,860,815-bp genome sequence are described in this report. Genome analysis revealed pathways enabling oxidation of molecular hydrogen, proteinaceous substrates, fatty acids, aromatic compounds, n-alkanes, and organic acids, including acetate, through anaerobic respiration linked to Fe(III) reduction. Consistent with the inability of G. acetivorans to grow on carbohydrates, the modified Embden-Meyerhof pathway encoded by the genome is incomplete. Autotrophic CO2 fixation is enabled by the Wood-Ljungdahl pathway. Reduction of insoluble poorly crystalline Fe(III) oxide depends on the transfer of electrons from the quinone pool to multiheme c-type cytochromes exposed on the cell surface. Direct contact of the cells and Fe(III) oxide particles could be facilitated by pilus-like appendages. Genome analysis indicated the presence of metabolic pathways for anaerobic degradation of aromatic compounds and n-alkanes, although an ability of G. acetivorans to grow on these substrates was not observed in laboratory experiments. Overall, our results suggest that Geoglobus species could play an important role in microbial communities of deep-sea hydrothermal vents as lithoautotrophic producers. An additional role as decomposers would close the biogeochemical cycle of carbon through complete mineralization of various organic compounds via Fe(III) respiration.

[1]  P. Roche,et al.  Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus , 2014, The ISME Journal.

[2]  E. Bongcam-Rudloff,et al.  Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5033 , 2014, Standards in genomic sciences.

[3]  G. Gasiunas,et al.  Molecular mechanisms of CRISPR-mediated microbial immunity , 2013, Cellular and Molecular Life Sciences.

[4]  Mechthild Pohlschroder,et al.  Novel Archaeal Adhesion Pilins with a Conserved N Terminus , 2013, Journal of bacteriology.

[5]  G. Reguera,et al.  Extracellular Electron Transfer to Fe(III) Oxides by the Hyperthermophilic Archaeon Geoglobus ahangari via a Direct Contact Mechanism , 2013, Applied and Environmental Microbiology.

[6]  Lynne A. Goodwin,et al.  Genome analysis of Desulfotomaculum kuznetsovii strain 17T reveals a physiological similarity with Pelotomaculum thermopropionicum strain SIT. , 2013, Standards in genomic sciences.

[7]  H. Atomi,et al.  Genetic Examination of Initial Amino Acid Oxidation and Glutamate Catabolism in the Hyperthermophilic Archaeon Thermococcus kodakarensis , 2013, Journal of bacteriology.

[8]  N. Ravin,et al.  Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group , 2013, PloS one.

[9]  J. Lloyd,et al.  Fe(III) Oxide Reduction by a Gram-positive Thermophile: Physiological Mechanisms for Dissimilatory Reduction of Poorly Crystalline Fe(III) Oxide by a Thermophilic Gram-positive Bacterium Carboxydothermus ferrireducens , 2012 .

[10]  N. Ravin,et al.  Complete Genome Sequence of Strain 1860, a Crenarchaeon of the Genus Pyrobaculum Able To Grow with Various Electron Acceptors , 2012, Journal of bacteriology.

[11]  J. Gescher,et al.  Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration , 2011, Applied and Environmental Microbiology.

[12]  R. A. Melnyk,et al.  Toward a Mechanistic Understanding of Anaerobic Nitrate-Dependent Iron Oxidation: Balancing Electron Uptake and Detoxification , 2011, Front. Microbio..

[13]  Lynne A. Goodwin,et al.  Complete genome sequence of Ferroglobus placidus AEDII12DO , 2011, Standards in genomic sciences.

[14]  Derek R Lovley,et al.  Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus , 2011, The ISME Journal.

[15]  A. Dohnalkova,et al.  Identification and Characterization of UndAHRCR-6, an Outer Membrane Endecaheme c-Type Cytochrome of Shewanella sp. Strain HRCR-6 , 2011, Applied and Environmental Microbiology.

[16]  Abhrajyoti Ghosh,et al.  Archaeal type IV pilus-like structures--evolutionarily conserved prokaryotic surface organelles. , 2011, Current opinion in microbiology.

[17]  N. Ravin,et al.  Complete Genome Sequence of “Vulcanisaeta moutnovskia” Strain 768-28, a Novel Member of the Hyperthermophilic Crenarchaeal Genus Vulcanisaeta , 2011, Journal of bacteriology.

[18]  I. Berg Ecological Aspects of the Distribution of Different Autotrophic CO2 Fixation Pathways , 2011, Applied and Environmental Microbiology.

[19]  T. Gaasterland,et al.  The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. , 2010, Environmental microbiology.

[20]  Konstantin G. Skryabin,et al.  The Genome Sequence of the Crenarchaeon Acidilobus saccharovorans Supports a New Order, Acidilobales, and Suggests an Important Ecological Role in Terrestrial Acidic Hot Springs , 2010, Applied and Environmental Microbiology.

[21]  Lynne A. Goodwin,et al.  Complete genome sequence of Archaeoglobus profundus type strain (AV18T) , 2010, Standards in genomic sciences.

[22]  D. Lovley,et al.  Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes , 2010, BMC Genomics.

[23]  K. Timmis,et al.  Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov. , 2009, International journal of systematic and evolutionary microbiology.

[24]  E. Bonch‐Osmolovskaya,et al.  Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. , 2009, International journal of systematic and evolutionary microbiology.

[25]  J. Wiegel,et al.  Characterization of a soluble oxidoreductase from the thermophilic bacterium Carboxydothermus ferrireducens , 2009, Extremophiles.

[26]  N. Ravin,et al.  Metabolic Versatility and Indigenous Origin of the Archaeon Thermococcus sibiricus, Isolated from a Siberian Oil Reservoir, as Revealed by Genome Analysis , 2009, Applied and Environmental Microbiology.

[27]  Joshua M. Stuart,et al.  Transcriptional Map of Respiratory Versatility in the Hyperthermophilic Crenarchaeon Pyrobaculum aerophilum , 2008, Journal of bacteriology.

[28]  T. Straatsma,et al.  In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype. , 2008, Environmental science & technology.

[29]  Geert M. van der Kraan,et al.  Bacteria from hydrocarbon seep areas growing on short-chain alkanes. , 2008, Trends in microbiology.

[30]  F. Widdel,et al.  Genes encoding the candidate enzyme for anaerobic activation of n-alkanes in the denitrifying bacterium, strain HxN1. , 2008, Environmental microbiology.

[31]  L. Young,et al.  Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes. , 2008, Biochemical and biophysical research communications.

[32]  R. Vachet,et al.  Constraints on Anaerobic Respiration in the Hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum , 2007, Applied and Environmental Microbiology.

[33]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[34]  Simonetta Gribaldo,et al.  Phylogenomics of the archaeal flagellum: rare horizontal gene transfer in a unique motility structure , 2007, BMC Evolutionary Biology.

[35]  J. Fredrickson,et al.  Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes , 2007, Molecular microbiology.

[36]  Ibtissem Grissa,et al.  CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats , 2007, Nucleic Acids Res..

[37]  F. Robb,et al.  Characterization of membrane-bound Fe(III)-EDTA reductase activities of the thermophilic gram-positive dissimilatory iron-reducing bacterium Thermoterrabacterium ferrireducens , 2007, Microbiology.

[38]  A. Mulyukin,et al.  Research on the early stages of spore germination in Bacillus licheniformis using dynamic phase microscopy , 2007, Microbiology.

[39]  E. van Heerden,et al.  Isolation of a soluble and membrane-associated Fe(III) reductase from the thermophile, Thermus scotoductus (SA-01). , 2006, FEMS microbiology letters.

[40]  M. Ishii,et al.  Acidianus manzaensis sp. nov., a Novel Thermoacidophilic Archaeon Growing Autotrophically by the Oxidation of H2 with the Reduction of Fe3+ , 2006, Current Microbiology.

[41]  M. Tivey,et al.  A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents , 2006, Nature.

[42]  J. Holden,et al.  Characterization of Dissimilatory Fe(III) versus NO3− Reduction in the Hyperthermophilic Archaeon Pyrobaculum aerophilum , 2006, Journal of bacteriology.

[43]  B. Siebers,et al.  Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. , 2005, Current opinion in microbiology.

[44]  Jeffrey A. Gralnick,et al.  Shewanella oneidensis MR-1 Uses Overlapping Pathways for Iron Reduction at a Distance and by Direct Contact under Conditions Relevant for Biofilms , 2005, Applied and Environmental Microbiology.

[45]  Gertraud Burger,et al.  AutoFACT: An Automatic Functional Annotation and Classification Tool , 2005, BMC Bioinformatics.

[46]  D. Frishman,et al.  Identification of 42 possible cytochrome C genes in the Shewanella oneidensis genome and characterization of six soluble cytochromes. , 2004, Omics : a journal of integrative biology.

[47]  J A Eisen,et al.  Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments , 2003, Science.

[48]  R. Bernander,et al.  Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii , 2002 .

[49]  D. Lovley,et al.  Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. , 2002, International journal of systematic and evolutionary microbiology.

[50]  E. Bonch‐Osmolovskaya,et al.  Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13 degrees N (East Pacific Rise). , 2001, FEMS microbiology ecology.

[51]  D. Lovley,et al.  Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. , 2001, Environmental microbiology.

[52]  D. Lovley,et al.  Acetate Oxidation Coupled to Fe(III) Reduction in Hyperthermophilic Microorganisms , 2001, Applied and Environmental Microbiology.

[53]  D. Lovley,et al.  Differences in Fe(III) reduction in the hyperthermophilic archaeon, Pyrobaculum islandicum, versus mesophilic Fe(III)-reducing bacteria. , 2001, FEMS microbiology letters.

[54]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[55]  P. Dobbin,et al.  Dissimilatory Fe(III) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(III) maltol enrichment. , 1999, FEMS microbiology letters.

[56]  Derek R. Lovley,et al.  Microbiological evidence for Fe(III) reduction on early Earth , 1998, Nature.

[57]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[58]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[59]  D. Hafenbradl,et al.  Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions , 1996, Archives of Microbiology.

[60]  M. Adams,et al.  Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus , 1996, Journal of bacteriology.

[61]  R. Huber,et al.  Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum , 1993, Applied and environmental microbiology.

[62]  A. Spormann,et al.  Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans , 1989, Archives of Microbiology.

[63]  A. Spormann,et al.  Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans , 1988, Archives of Microbiology.

[64]  K. Stetter Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria , 1988 .

[65]  JAMES C. G. Walker,et al.  Was the Archaean biosphere upside down? , 1987, Nature.

[66]  F. Widdel,et al.  Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle , 1986, Archives of Microbiology.

[67]  Miriam,et al.  Complete genome sequence of Archaeoglobus profundus type strain (AV18) , 2014 .

[68]  J. Groves,et al.  The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation. , 2012, Environmental microbiology.

[69]  Tian Zhang,et al.  Geobacter: the microbe electric's physiology, ecology, and practical applications. , 2011, Advances in microbial physiology.

[70]  N. Ravin,et al.  The genome of archaeon Thermococcus sibiricus indicates its metabolic versatility and indigenous origin , 2009 .

[71]  B. R I A,et al.  In Vitro Evolution of a Peptide with a Hematite Binding Motif That May Constitute a Natural Metal-Oxide Binding Archetype , 2008 .

[72]  Kelly P. Nevin,et al.  Differential protein expression in the metal‐reducing bacterium Geobacter sulfurreducens strain PCA grown with fumarate or ferric citrate , 2006, Proteomics.

[73]  M. Tivey,et al.  Isolation of a Ubiquitous Obligate Thermoacidophilic Archaeon From Deep-Sea Hydrothermal Vents , 2006 .

[74]  J. Ferry Enzymology of one-carbon metabolism in methanogenic pathways. , 1999, FEMS microbiology reviews.