Detecting Regions from Single Scale Edges

We believe that the potential of edges in local feature detection has not been fully exploited and therefore propose a detector that starts from single scale edges and produces reliable and interpretable blob-like regions and groups of regions of arbitrary shape. The detector is based on merging local maxima of the distance transform guided by the gradient strength of the surrounding edges. Repeatability and matching score are evaluated and compared to state-of-the-art detectors on standard benchmarks. Furthermore, we demonstrate the potential application of our method to wide-baseline matching and feature detection in sequences involving human activity.

[1]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[2]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[3]  S. Kollias,et al.  Dense saliency-based spatiotemporal feature points for action recognition , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Kurt Konolige,et al.  CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching , 2008, ECCV.

[5]  Matthew A. Brown,et al.  Invariant Features from Interest Point Groups , 2002, BMVC.

[6]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Tony Lindeberg,et al.  Edge Detection and Ridge Detection with Automatic Scale Selection , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[9]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[10]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.

[11]  Luc Van Gool,et al.  Content-Based Image Retrieval Based on Local Affinely Invariant Regions , 1999, VISUAL.

[12]  Krystian Mikolajczyk,et al.  Segmentation Based Interest Points and Evaluation of Unsupervised Image Segmentation Methods , 2009, BMVC.

[13]  Louis Vuurpijl,et al.  Using Pen-Based Outlines for Object-Based Annotation and Image-Based Queries , 1999, VISUAL.

[14]  Cordelia Schmid,et al.  Semi-Local Affine Parts for Object Recognition , 2004, BMVC.

[15]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[16]  Stepán Obdrzálek,et al.  Stable Affine Frames on Isophotes , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[17]  Robert T. Collins,et al.  CSDD Features: Center-Surround Distribution Distance for Feature Extraction and Matching , 2008, ECCV.

[18]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[19]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[20]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[21]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[23]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[24]  Daniel P. Huttenlocher,et al.  Distance Transforms of Sampled Functions , 2012, Theory Comput..

[25]  Ankur Agarwal,et al.  Hyperfeatures - Multilevel Local Coding for Visual Recognition , 2006, ECCV.

[26]  Alexei A. Efros,et al.  Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[27]  Frank P. Ferrie,et al.  Structure Guided Salient Region Detector , 2008, BMVC.

[28]  Axel Pinz,et al.  Computer Vision – ECCV 2006 , 2006, Lecture Notes in Computer Science.