Phylogenetic constraints and adaptation explain food-web structure

[1]  D. Miller,et al.  Reassessing evolutionary relationships of scleractinian corals , 1996, Coral Reefs.

[2]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[3]  K. Bjorndal,et al.  Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems , 2003, Science.

[4]  A. Grant,et al.  Long-Term Region-Wide Declines in Caribbean Corals , 2003, Science.

[5]  J. L. Gittleman,et al.  Preserving the Tree of Life , 2003, Science.

[6]  R. May,et al.  Predicted correspondence between species abundances and dendrograms of niche similarities , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Michio Kondoh,et al.  Foraging Adaptation and the Relationship Between Food-Web Complexity and Stability , 2003, Science.

[8]  Stephen R. Carpenter,et al.  Ecological community description using the food web, species abundance, and body size , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Ean,et al.  Patterns of septal biomineralization in Scleractinia compared with their 28 S rRNA phylogeny : a dual approach for a new taxonomic framework , 2003 .

[10]  M. Oppen,et al.  Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria) , 2002, Molecular ecology.

[11]  P. Price Macroevolutionary Theory on Macroecological Patterns , 2002 .

[12]  Chaolun Allen Chen,et al.  Analysis of the mitochondrial 12S rRNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. , 2002, Molecular phylogenetics and evolution.

[13]  Fred Wells,et al.  Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs , 2002, Science.

[14]  J. Stolarski,et al.  TOWARDS A NEW SYNTHESIS OF EVOLUTIONARY RELATIONSHIPS AND CLASSIFICATION OF SCLERACTINIA , 2001, Journal of Paleontology.

[15]  N. Knowlton,et al.  Evidence for three major clades within the snapping shrimp genus Alpheus inferred from nuclear and mitochondrial gene sequence data. , 2001, Molecular phylogenetics and evolution.

[16]  A. Budd Diversity and extinction in the Cenozoic history of Caribbean reefs , 2000, Coral Reefs.

[17]  Neo D. Martinez,et al.  Simple rules yield complex food webs , 2000, Nature.

[18]  S. Cairns,et al.  Molecular phylogenetic hypotheses for the evolution of scleractinian corals , 2000 .

[19]  A. Solow,et al.  ON LUMPING SPECIES IN FOOD WEBS , 1998 .

[20]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[21]  L F Bersier,et al.  Scaling regions for food web properties. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Roughgarden,et al.  Construction and Analysis of a Large Caribbean Food Web , 1993 .

[23]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[24]  K. Havens,et al.  Scale and Structure in Natural Food Webs , 1992, Science.

[25]  Neo D. Martinez Constant Connectance in Community Food Webs , 1992, The American Naturalist.

[26]  S. Hall,et al.  Food-web patterns : lessons from a species-rich web , 1991 .

[27]  G. Polis,et al.  Complex Trophic Interactions in Deserts: An Empirical Critique of Food-Web Theory , 1991, The American Naturalist.

[28]  Neo D. Martinez Artifacts or Attributes? Effects of Resolution on the Little Rock Lake Food Web , 1991 .

[29]  Joel E. Cohen,et al.  Community Food Webs: Data and Theory , 1990 .

[30]  Joel E. Cohen,et al.  A Stochastic Theory of Community Food Webs , 1990 .

[31]  Philip H. Warren,et al.  Spatial and temporal variation in the structure of a freshwater food web , 1989 .

[32]  R. Ulanowicz,et al.  The Seasonal Dynamics of The Chesapeake Bay Ecosystem , 1989 .

[33]  J H Lawton,et al.  Static and dynamic explanations for patterns in food webs. , 1988, Trends in ecology & evolution.

[34]  Charles M. Newman,et al.  A stochastic theory of community food webs I. Models and aggregated data , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  Joel E. Cohen,et al.  A stochastic theory of community food webs II. Individual webs , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[36]  M. Kimura Estimation of evolutionary distances between homologous nucleotide sequences. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. E. Cohen,et al.  Food webs and niche space. , 1979, Monographs in population biology.

[38]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[39]  J. Diamond,et al.  Ecology and Evolution of Communities , 1976, Nature.

[40]  D. L. Angelis,et al.  STABILITY AND CONNECTANCE IN FOOD WEB MODELS , 1975 .

[41]  MARK R. GARDNER,et al.  Connectance of Large Dynamic (Cybernetic) Systems: Critical Values for Stability , 1970, Nature.

[42]  J. Wells The recent solitary mussid scleractinian corals , 1964 .

[43]  P. Ehrlich,et al.  Population Biology. , 1962, Science.

[44]  T. W. Vaughan,et al.  Revision of the Suborders Families, and Genera of the Scleractinia , 1943 .