The myeloproliferative disorders.

The discovery of an identical mutation (V617F) of the JAK2 gene in patients with polycythemia vera, essential thrombocythemia, and myelofibrosis — the principal Philadelphia chromosome–negative myeloproliferative disorders — has greatly advanced our understanding of these conditions. This article reviews the legacy of this discovery and how it has changed our view of the origins, interrelations, and management of the myeloproliferative disorders.

[1]  N. Sepp,et al.  Identification of activating c-kit mutations in adult-, but not in childhood-onset indolent mastocytosis: a possible explanation for divergent clinical behavior. , 1998, The Journal of investigative dermatology.

[2]  J. D. van der Walt,et al.  Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. , 2005, The New England journal of medicine.

[3]  J. Spivak,et al.  Posttranslational processing of the thrombopoietin receptor is impaired in polycythemia vera. , 1999, Blood.

[4]  N. Villamor,et al.  Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. , 2006, Haematologica.

[5]  A. Cumano,et al.  Jak2 Deficiency Defines an EssentialDevelopmental Checkpoint in DefinitiveHematopoiesis , 1998, Cell.

[6]  G. Mufti,et al.  Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome. , 2005, Gastroenterology.

[7]  Qingshan Li,et al.  Identification of an Acquired JAK2 Mutation in Polycythemia Vera* , 2005, Journal of Biological Chemistry.

[8]  P. Johansson,et al.  Trends in the incidence of chronic Philadelphia chromosome negative (Ph‐) myeloproliferative disorders in the city of Göteborg, Sweden, during 1983–99 , 2004, Journal of internal medicine.

[9]  J. Marine,et al.  Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. , 2000, Genes & development.

[10]  G. M. Taylor,et al.  Mutation studies in CD3+, CD19+ and CD34+ cell fractions in myeloproliferative disorders with homozygous JAK2V617F in granulocytes , 2005, British journal of haematology.

[11]  R. Kralovics,et al.  Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. , 2002, Experimental hematology.

[12]  J. Goldberg,et al.  Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. , 1986, Seminars in hematology.

[13]  Prchal Jf,et al.  Letter: Bone-marrow responses in polycythemia vera. , 1974 .

[14]  David P Steensma,et al.  The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both "atypical" myeloproliferative disorders and myelodysplastic syndromes. , 2005, Blood.

[15]  E. Estey,et al.  JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocytic leukemia. , 2005, Blood.

[16]  H. Heimpel,et al.  The Jak2V617F mutation, PRV-1 overexpression, and EEC formation define a similar cohort of MPD patients. , 2005, Blood.

[17]  S. Fröhling,et al.  Rare occurrence of the JAK2 V617F mutation in AML subtypes M5, M6, and M7. , 2006, Blood.

[18]  O. Silvennoinen,et al.  Regulation of the Jak2 Tyrosine Kinase by Its Pseudokinase Domain , 2000, Molecular and Cellular Biology.

[19]  P. Campbell,et al.  Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study , 2005, The Lancet.

[20]  A. Morley,et al.  Interindividual variation in mitotic recombination. , 1999, American journal of human genetics.

[21]  D. Heitjan,et al.  Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[23]  H. Lodish,et al.  Fetal Anemia and Apoptosis of Red Cell Progenitors in Stat5a−/−5b−/− Mice A Direct Role for Stat5 in Bcl-XL Induction , 1999, Cell.

[24]  G. Condorelli,et al.  Differential expression and functional role of GATA-2, NF-E2, and GATA-1 in normal adult hematopoiesis. , 1995, The Journal of clinical investigation.

[25]  B. Druker,et al.  JAK2 V617F Mutation Induces a Myeloproliferative Disorder in Mice. , 2005 .

[26]  C. Busse,et al.  Biochemical characterization of PRV-1, a novel hematopoietic cell surface receptor, which is overexpressed in polycythemia rubra vera. , 2002, Blood.

[27]  R. Mesa,et al.  A longitudinal study of the JAK2(V617F) mutation in myelofibrosis with myeloid metaplasia: analysis at two time points. , 2006, Haematologica.

[28]  Peter Marynen,et al.  A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. , 2003, The New England journal of medicine.

[29]  D. Steensma,et al.  The JAK2V617F tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates , 2005 .

[30]  A. Green,et al.  7 Molecular genetics and cytogenetics of myeloproliferative disorders , 1998 .

[31]  C. Harrison,et al.  The presence of the JAK2 V617F mutation is associated with a higher haemoglobin and increased risk of thrombosis in essential thrombocythaemia , 2006, British journal of haematology.

[32]  S. Constantinescu,et al.  Janus Kinases Affect Thrombopoietin Receptor Cell Surface Localization and Stability* , 2005, Journal of Biological Chemistry.

[33]  W. Vainchenker,et al.  An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. , 2006, Blood.

[34]  A. Tefferi Pathogenesis of myelofibrosis with myeloid metaplasia. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[35]  W. Dameshek Editorial: Some Speculations on the Myeloproliferative Syndromes , 1951 .

[36]  P. Campbell,et al.  V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. , 2006, Blood.

[37]  H. Lodish,et al.  Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. , 2001, Blood.

[38]  R. Gale Evaluation of clonality in myeloid stem-cell disorders. , 1999, Seminars in hematology.

[39]  R. Levine,et al.  X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. , 2005, Blood.

[40]  S. Constantinescu,et al.  Active and inactive orientations of the transmembrane and cytosolic domains of the erythropoietin receptor dimer. , 2003, Molecular cell.

[41]  T. L. Hood,et al.  Chromosome 20 deletions in myeloid malignancies: reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes , 2000, Oncogene.

[42]  A. Pancrazzi,et al.  A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. , 2005, Blood.

[43]  G. Barosi,et al.  The Italian Consensus Conference on Diagnostic Criteria for Myelofibrosis with Myeloid Metaplasia , 1999, British journal of haematology.

[44]  W. Vainchenker,et al.  Role for the nuclear factor kappaB pathway in transforming growth factor-beta1 production in idiopathic myelofibrosis: possible relationship with FK506 binding protein 51 overexpression. , 2005, Cancer research.

[45]  M. Stratton,et al.  The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. , 2005, Blood.

[46]  Stefan N. Constantinescu,et al.  A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera , 2005, Nature.

[47]  M. Loh,et al.  The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. , 2005, Blood.

[48]  D. Neuberg,et al.  Activated Jak2 with the V617F Point Mutation Promotes G1/S Phase Transition* , 2006, Journal of Biological Chemistry.

[49]  J. Melo,et al.  Chronic myeloid leukemia--advances in biology and new approaches to treatment. , 2003, The New England journal of medicine.

[50]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[51]  M. Cazzola,et al.  Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. , 2005, Blood.

[52]  W. Vainchenker,et al.  Detection of JAK2 V617F as a first intention diagnostic test for erythrocytosis , 2006, Leukemia.

[53]  T. Hudson,et al.  FGFR1 is fused with a novel zinc-finger gene, ZNF198, in the t(8;13) leukaemia/lymphoma syndrome , 1998, Nature Genetics.

[54]  R. Levine,et al.  Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. , 2006, Blood.

[55]  C. Richard,et al.  Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. , 1998, The New England journal of medicine.

[56]  M. Wadleigh,et al.  JAK2V617F mutation in essential thrombocythaemia: clinical associations and long‐term prognostic relevance , 2005, British journal of haematology.

[57]  D. Oscier,et al.  Minimal molecular response in polycythemia vera patients treated with imatinib or interferon alpha. , 2005, Blood.

[58]  J. Spivak,et al.  Polycythemia vera: myths, mechanisms, and management. , 2002, Blood.

[59]  I. Wilson,et al.  Erythropoietin receptor activation by a ligand-induced conformation change. , 1999, Science.

[60]  C. Peschle,et al.  Increased death receptor resistance and FLIPshort expression in polycythemia vera erythroid precursor cells. , 2006, Blood.

[61]  O. Silvennoinen,et al.  JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin , 1993, Cell.

[62]  S. H. Lee,et al.  The JAK2 V617F mutation in de novo acute myelogenous leukemias , 2006, Oncogene.

[63]  A. Tefferi Myelofibrosis with myeloid metaplasia. , 2000, The New England journal of medicine.

[64]  G. Thomas,et al.  Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. , 2006, Blood.

[65]  J. Stephenson,et al.  Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia , 1983, Nature.

[66]  Laurie E Ailles,et al.  Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. , 2004, The New England journal of medicine.

[67]  W. Vainchenker,et al.  JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. , 2006, Blood.

[68]  R. Kralovics,et al.  Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. , 2006, Blood.

[69]  T. Maiwald,et al.  Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF‐E2 , 2005, British journal of haematology.

[70]  J. Adamson,et al.  Polycythemia vera: stem-cell and probable clonal origin of the disease. , 1976, The New England journal of medicine.

[71]  W. Vainchenker,et al.  Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. , 2004, Experimental hematology.

[72]  H. Lodish,et al.  The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. , 2001, Molecular cell.

[73]  S. Bhattacharya,et al.  Signaling through the JAK/STAT pathway, recent advances and future challenges. , 2002, Gene.

[74]  A. Green,et al.  Essential thrombocythemia. , 2003, Hematology/oncology clinics of North America.

[75]  S. Constantinescu,et al.  JAK1 and Tyk2 Activation by the Homologous Polycythemia Vera JAK2 V617F Mutation , 2005, Journal of Biological Chemistry.

[76]  D. Oscier,et al.  Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. , 2005, Blood.

[77]  T. Barbui,et al.  Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[78]  E. Montserrat,et al.  Myelofibrosis with myeloid metaplasia following essential thrombocythaemia: actuarial probability, presenting characteristics and evolution in a series of 195 patients , 2002, British journal of haematology.

[79]  I. Weissman,et al.  The JAK2 V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[80]  T. Barbui The leukemia controversy in myeloproliferative disorders: is it a natural progression of disease, a secondary sequela of therapy, or a combination of both? , 2004, Seminars in hematology (Print).

[81]  T. Barbui,et al.  Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. , 1995, The New England journal of medicine.

[82]  P. Möller,et al.  Absence of the JAK2 V617F activating mutation in classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma , 2006, Leukemia.

[83]  H M Kvasnicka,et al.  Relevance of bone marrow features in the differential diagnosis between essential thrombocythemia and early stage idiopathic myelofibrosis. , 2000, Haematologica.

[84]  Eric M. Sandberg,et al.  Jak2 tyrosine kinase , 2007, Cell Biochemistry and Biophysics.

[85]  G. Meinhardt,et al.  STAT3 is constitutively active in some patients with Polycythemia rubra vera. , 2001, Experimental hematology.

[86]  A. Tefferi,et al.  FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. , 2004, Blood.

[87]  W. Vainchenker,et al.  Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: possible relationship with FKBP51 overexpression. , 2003, Experimental hematology.

[88]  Todd R. Golub,et al.  Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation , 1994, Cell.

[89]  D. Gilliland,et al.  MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. , 2006, Blood.

[90]  G. Faguet,et al.  Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell , 1981 .

[91]  P. Campbell,et al.  Guidelines for the diagnosis, investigation and management of polycythaemia/erythrocytosis , 2005, British journal of haematology.

[92]  P. Campbell,et al.  Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. , 2006, Blood.

[93]  Yiguo Hu,et al.  Molecular Pathogenesis of Polycythemia Induced in Mice by JAK2 V617F. , 2005 .

[94]  J. Myklebust,et al.  Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. , 2002, Experimental hematology.

[95]  Sandra A. Moore,et al.  MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia , 2006, PLoS medicine.

[96]  P. Guglielmelli,et al.  Clinical implications of the JAK2 V617F mutation in essential thrombocythemia , 2005, Leukemia.

[97]  G. Massonnet,et al.  High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. , 2006, Blood.

[98]  P. Guttorp,et al.  An X chromosome gene regulates hematopoietic stem cell kinetics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J. Spivak,et al.  Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. , 1998, The New England journal of medicine.

[100]  J. Marine,et al.  Jak2 Is Essential for Signaling through a Variety of Cytokine Receptors , 1998, Cell.

[101]  H. Lodish,et al.  Active Conformation of the Erythropoietin Receptor , 2006, Journal of Biological Chemistry.

[102]  H. Lodish,et al.  Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Dr. G. Heuck Zwei Fälle von Leukämie mit eigenthümlichem Blut- resp. Knochenmarksbefund , 1879, Archiv für pathologische Anatomie und Physiologie und für klinische Medicin.

[104]  T. Barbui,et al.  Leukocyte-platelet interaction in patients with essential thrombocythemia and polycythemia vera. , 2005, Experimental hematology.

[105]  P. Fenaux,et al.  Essential thrombocythemias without V617F JAK2 mutation are clonal hematopoietic stem cell disorders , 2006, Leukemia.

[106]  W. Vainchenker,et al.  High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. , 1997, Blood.

[107]  A. Tefferi,et al.  Current opinion in essential thrombocythemia: pathogenesis, diagnosis, and management. , 2001, Blood reviews.

[108]  N. Andrews,et al.  Ectopic Expression of Transcription Factor NF-E2 Alters the Phenotype of Erythroid and Monoblastoid Cells* , 2000, The Journal of Biological Chemistry.

[109]  A. Green,et al.  The incidence of the JAK2 V617F mutation in patients with idiopathic erythrocytosis. , 2006, Haematologica.

[110]  O. Witte,et al.  Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. , 1990, Science.

[111]  P. Campbell,et al.  Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders , 2005, The Lancet.

[112]  W. Vainchenker,et al.  A JAK2 mutation in myeloproliferative disorders: pathogenesis and therapeutic and scientific prospects. , 2005, Trends in molecular medicine.

[113]  R. Mesa,et al.  JAK2V617F and leukemic transformation in myelofibrosis with myeloid metaplasia , 2006 .