Sigma-Prikry forcing II: Iteration Scheme

In Part I of this series [5], we introduced a class of notions of forcing which we call [Formula: see text]-Prikry, and showed that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are [Formula: see text]-Prikry. We proved that given a [Formula: see text]-Prikry poset [Formula: see text] and a [Formula: see text]-name for a nonreflecting stationary set [Formula: see text], there exists a corresponding [Formula: see text]-Prikry poset that projects to [Formula: see text] and kills the stationarity of [Formula: see text]. In this paper, we develop a general scheme for iterating [Formula: see text]-Prikry posets, as well as verify that the Extender-based Prikry forcing is [Formula: see text]-Prikry. As an application, we blow-up the power of a countable limit of Laver-indestructible supercompact cardinals, and then iteratively kill all nonreflecting stationary subsets of its successor. This yields a model in which the singular cardinal hypothesis fails and simultaneous reflection of finite families of stationary sets holds.