Modern Design of Electromechanical Devices

The paper provides an overview of the modern field simulation techniques available to assist in the design and performance prediction of electromechanical devices, including electric motors. Commercial software, usually based on finite element or related techniques, is already very advanced and provides a reliable tool for every-day use in the design office. At the same time Computational Electromagnetics is a thriving area of research with emerging new techniques and methods, in particular for multi-physics and optimisation problems.

[1]  L. Lebensztajn,et al.  Kriging: a useful tool for electromagnetic device optimization , 2004, IEEE Transactions on Magnetics.

[2]  M. V. K. Chari,et al.  Finite-Element Analysis of Magnetically Saturated D-C Machines , 1971 .

[3]  C. J. Carpenter,et al.  Surface-integral methods of calculating forces on magnetized iron parts , 1960 .

[4]  Hans Rudolf Schwarz,et al.  Finite Element Methods , 1988 .

[5]  Andy J. Keane,et al.  On the Design of Optimization Strategies Based on Global Response Surface Approximation Models , 2005, J. Glob. Optim..

[6]  K. F. Goddard,et al.  High temperature superconducting power transformers: conclusions from a design study , 1999 .

[7]  Jan K. Sykulski Computer package for calculating electric and magnetic fields exploiting dual energy bounds , 1988 .

[8]  C. Christopoulos,et al.  The Transmission-line Modeling Method: TLM , 1995, IEEE Antennas and Propagation Magazine.

[9]  P. Hammond,et al.  Calculation of inductance and capaci-tance by means of dual energy principles , 1976 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  W. G. Bickley,et al.  Relaxation Methods in Theoretical Physics , 1947 .

[12]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[13]  Jan K. Sykulski,et al.  Comparative study of evolution strategies combined with approximation techniques for practical electromagnetic optimization problems , 2001 .

[14]  A. J. Davies,et al.  On the use of the total scalar potential in the numerical solution of field problems in electromagnetics , 1988 .

[15]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[16]  Jan K. Sykulski,et al.  Network equivalents of nodal and edge elements in electromagnetics , 2002 .

[17]  K. Hameyer,et al.  Electromagnetic force density in a ferromagnetic material , 2004, IEEE Transactions on Magnetics.

[18]  C. Trowbridge,et al.  The Analytical and Numerical Solution of Electric and Magnetic Fields , 1992 .

[19]  Theodoros D. Tsiboukis,et al.  Multiparametric vector finite elements: a systematic approach to the construction of three-dimensional, higher order, tangential vector shape functions , 1996 .

[20]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[21]  J.K. Sykulski,et al.  Applying continuum design sensitivity analysis combined with standard EM software to shape optimization in magnetostatic problems , 2004, IEEE Transactions on Magnetics.

[22]  S. McFee,et al.  A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics , 1988 .

[23]  Igor Tsukerman,et al.  Overlapping finite elements for problems with movement , 1992, 1992. Digests of Intermag. International Magnetics Conference.

[24]  Jan K. Sykulski,et al.  Design of a 100 kVA high temperature superconducting demonstration synchronous generator , 2002 .

[25]  A. Kost,et al.  Error estimation and adaptive mesh generation in the 2D and 3D finite element method , 1996 .

[26]  A. M. Winslow NUMERICAL CALCULATION OF STATIC MAGNETIC FIELDS IN AN IRREGULAR TRIANGLE MESH , 1964 .

[27]  A.G. Jack,et al.  Permanent magnet machines with powdered iron cores and pre-pressed windings , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[28]  S. Wakao,et al.  Large-scale analysis of eddy-current problems by the hybrid finite element-boundary element method combined with the fast multipole method , 2006, IEEE Transactions on Magnetics.

[29]  Z. J. Cendes,et al.  Magnetic field computation using Delaunay triangulation and complementary finite element methods , 1983 .

[30]  P. Silvester High-order polynomial triangular finite elements for potential problems , 1969 .

[31]  Andrzej Demenko,et al.  Movement simulation in finite element analysis of electric machine dynamics , 1996 .

[32]  Dragan Poljak,et al.  Electrical Engineering and Electromagnetics VI , 2003 .

[33]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .

[34]  R. L. Stoll The analysis of eddy currents , 1974 .

[35]  J.-C. Verite,et al.  A mixed fem-biem method to solve 3-D eddy-current problems , 1982 .

[36]  Enzo Tonti,et al.  Finite formulation of electromagnetic field , 2002 .

[37]  J. Coulomb,et al.  Finite element implementation of virtual work principle for magnetic or electric force and torque computation , 1984 .

[38]  E. M. Freeman,et al.  A novel mapping technique for open boundary finite element solutions to Poisson's equation , 1988 .

[39]  Dong-Hun Kim,et al.  Efficient force calculations based on continuum sensitivity analysis , 2005, IEEE Transactions on Magnetics.

[40]  J. C. Sabonnadiere,et al.  Finite element modeling of open boundary problems , 1990 .

[41]  Luc Dupré,et al.  Electromagnetic hysteresis modelling: from material science to finite element analysis of devices , 2003 .

[42]  R. L. Stoll,et al.  High temperature superconducting demonstrator transformer: design considerations and first test results , 1999, IEEE International Magnetics Conference.

[43]  J.K. Sykulski,et al.  A novel scheme for material updating in source distribution optimization of magnetic devices using sensitivity analysis , 2005, IEEE Transactions on Magnetics.

[44]  P. P. Silvester,et al.  Computer-aided design in magnetics , 1985 .

[45]  Jan K. Sykulski,et al.  Network models of three-dimensional electromagnetic fields , 2008 .

[46]  Ronnie Belmans,et al.  Numerical modelling and design of electrical machines and devices , 1999 .

[47]  D. Baldomir,et al.  Differential forms and electromagnetism in 3-dimensional Euclidean space R3 , 1986 .

[48]  Jan K. Sykulski,et al.  A method of estimating the total AC loss in a high-temperature superconducting transformer winding , 2000 .

[49]  Ana Vukovic,et al.  Transmission line modelling using unstructured meshes , 2004 .

[50]  Jan K. Sykulski,et al.  Magneto-electric network models in electromagnetism , 2006 .

[51]  Jan K. Sykulski,et al.  A new approach to modelling dominant AC loss in HTc superconducting solenoidal windings , 1999 .

[52]  R. V. Southwell,et al.  Relaxation Methods in Theoretical Physics , 1947 .

[53]  K. Preis,et al.  On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems , 1996 .

[54]  Andrzej Demenko,et al.  Reluctance network formed by means of edge element method , 1998 .

[55]  J. Simkin,et al.  On the use of the total scalar potential on the numerical solution of fields problems in electromagnetics , 1979 .

[56]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[57]  C. Trowbridge,et al.  Some key developments in computational electromagnetics and their attribution , 2006, IEEE Transactions on Magnetics.

[58]  A. B. J. Reece,et al.  Finite Element Methods in Electrical Power Engineering , 2000 .

[59]  Jan K. Sykulski,et al.  2D modeling of field diffusion and AC losses in high temperature superconducting tapes , 2000 .

[60]  Jan K. Sykulski,et al.  Engineering Electromagnetism: Physical Processes and Computation , 1994 .

[61]  Mouloud Feliachi,et al.  Conception of an air-gap element for the dynamic analysis of the electromagnetic field in electric machines , 1982 .