Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis

Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters -- effective temperature T_{\rm eff}, surface gravity log g and metallicity [Fe/H], absolute magnitudes M_V and M_{Ks}, {\alpha}-element to metal (and iron) abundance ratio [{\alpha}/M] (and [{\alpha}/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the LAMOST spectra with amultivariate regressionmethod based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, APOGEE) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ~100K for Teff, ~0.1 dex for log g, 0.3 -- 0.4mag for M_V and M_{Ks}, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [{\alpha}/M] ([{\alpha}/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on the observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

[1]  Jaymie M. Matthews,et al.  REVISED STELLAR PROPERTIES OF KEPLER TARGETS FOR THE QUARTER 1–16 TRANSIT DETECTION RUN , 2013, 1312.0662.

[2]  A. Bijaoui,et al.  Automated derivation of stellar atmospheric parameters and chemical abundances: the MATISSE algorithm , 2006 .

[3]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS , 2007, 0710.5778.

[4]  Bingqiu Chen,et al.  The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history? , 2015, 1505.08063.

[5]  A. J. Cenarro,et al.  An updated MILES stellar library and stellar population models , 2011, 1107.2303.

[6]  Bingqiu Chen,et al.  LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): target selection and the first release of value-added catalogues , 2014, 1412.6628.

[7]  Xiangru Li,et al.  Estimating stellar atmospheric parameters based on LASSO and support-vector regression , 2015, 1508.00369.

[8]  Anna Y. Q. Ho,et al.  THE CANNON: A DATA-DRIVEN APPROACH TO STELLAR LABEL DETERMINATION , 2015, 1501.07604.

[9]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[10]  Yong-Heng Zhao,et al.  LAMOST spectral survey — An overview , 2012 .

[11]  Xiangru Li,et al.  LINEARLY SUPPORTING FEATURE EXTRACTION FOR AUTOMATED ESTIMATION OF STELLAR ATMOSPHERIC PARAMETERS , 2015, ArXiv.

[12]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[13]  Chao Liu,et al.  ASTEROSEISMIC-BASED ESTIMATION OF THE SURFACE GRAVITY FOR THE LAMOST GIANT STARS , 2014, 1411.0235.

[14]  Charles Francis,et al.  XHIP: An extended hipparcos compilation , 2012 .

[15]  R. Peletier,et al.  Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters , 2006, astro-ph/0611618.

[16]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[17]  K. Fuhrmann Nearby stars of the Galactic disc and halo – IV , 2008 .

[18]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[19]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[20]  Yue Wu,et al.  ULySS: a full spectrum fitting package , 2009, 0903.2979.

[21]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[22]  Validation of LAMOST Stellar Parameters with the PASTEL Catalog , 2015, 1510.02208.

[23]  A. Bijaoui,et al.  The Gaia astrophysical parameters inference system (Apsis) - Pre-launch description , 2013, 1309.2157.

[24]  E. Starkenburg,et al.  GALACTIC ARCHAEOLOGY: NEAR-FIELD COSMOLOGY AND THE FORMATION OF THE MILKY WAY , 2012 .

[25]  Yanchun Liang,et al.  Automatic determination of stellar atmospheric parameters and construction of stellar spectral templates of the Guoshoujing Telescope (LAMOST) , 2011, 1105.2681.

[26]  Haitao Zhao,et al.  Astrometric calibration of the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anti-center (XSTPS-GAC) , 2014 .

[27]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[28]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[29]  U. Munari,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): SECOND DATA RELEASE , 2008, 0806.0546.

[30]  Tan Yang,et al.  An autoencoder of stellar spectra and its application in automatically estimating atmospheric parameters , 2015, 1508.00338.

[31]  Yang Huang,et al.  Empirical metallicity-dependent calibrations of effective temperature against colours for dwarfs and giants based on interferometric data , 2015, 1508.06080.

[32]  Xu Zhou,et al.  The first data release (DR1) of the LAMOST regular survey , 2015 .

[33]  Yin-Dun Mao,et al.  Data release of the LAMOST pilot survey , 2012 .

[34]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[35]  R. Ibata,et al.  Received; accepted Submitted to the Astrophysical Journal Letters. , 1998 .

[36]  A. J. Cenarro,et al.  Medium-resolution isaac newton telescope library of empirical spectra , 2006 .

[37]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[38]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[39]  C. Han,et al.  A method of measuring the [α/Fe] ratios from the spectra of the LAMOST survey , 2016 .

[40]  A. Bijaoui,et al.  Stellar parametrization from Gaia RVS spectra , 2015, 1510.00111.

[41]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[42]  G. Zhao,et al.  The First Data Release (DR1) of the LAMOST general survey , 2015, 1505.01570.

[43]  E. Friel,et al.  A CHEMICAL ABUNDANCE STUDY OF 10 OPEN CLUSTERS BASED ON WIYN-HYDRA SPECTROSCOPY , 2011, 1107.4139.

[44]  Heidi Jo Newberg,et al.  LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan , 2012, 1206.3578.

[45]  H. T. Zhang,et al.  LAMOST OBSERVATIONS IN THE KEPLER FIELD. I. DATABASE OF LOW-RESOLUTION SPECTRA , 2015, 1508.06391.

[46]  Jingchang Pan,et al.  Stellar atmospheric parameter estimation using Gaussian process regression , 2015 .

[47]  Yang Huang,et al.  On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars , 2015, 1505.08065.

[48]  U. Munari,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE , 2006, 1309.4284.

[49]  S. Hekker,et al.  On the LSP3 estimates of surface gravity for LAMOST-Kepler stars with asteroseismic measurements , 2015, 1510.08677.

[50]  Gang Zhao,et al.  Preface: The LAMOST Galactic surveys and early results , 2015 .

[51]  Chao Zhai,et al.  The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) , 2012 .

[52]  Yongheng Zhao,et al.  Automatic stellar spectral parameterization pipeline for LAMOST survey , 2014, Proceedings of the International Astronomical Union.

[53]  B. Yanny,et al.  A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey , 2005, astro-ph/0509812.

[54]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[55]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[56]  W. Chaplin,et al.  Asteroseismic surface gravity for evolved stars , 2013, 1305.6586.

[57]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[58]  Carlos Dafonte,et al.  ANNs and Wavelets: A Strategy for Gaia RVS Low S/N Stellar Spectra Parameterization , 2010 .

[59]  U. Munari,et al.  The radial velocity experiment (RAVE): First data release , 2006 .

[60]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: characterisation of the [α/Fe] sequences in the Milky Way discs , 2015, 1507.08066.

[61]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[62]  V. Adibekyan,et al.  Gaia FGK benchmark stars: abundances of α and iron-peak elements , 2015, 1507.00027.

[63]  C. Soubiran,et al.  The PASTEL catalogue of stellar parameters , 2010, 1004.1069.

[64]  C. Allende Prieto,et al.  Estimation of stellar atmospheric parameters from SDSS/SEGUE spectra , 2007, astro-ph/0703309.

[65]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[66]  Bingqiu Chen,et al.  The LAMOST stellar parameter pipeline at Peking University – lsp3 , 2014, 1412.6627.

[67]  P. Dubois,et al.  SIMBAD: An Astronomical Database , 1989 .

[68]  Haibo Yuan,et al.  Empirical extinction coefficients for the GALEX, SDSS, 2MASS and WISE passbands , 2013, 1301.1427.

[69]  S G Wang,et al.  Special configuration of a very large Schmidt telescope for extensive astronomical spectroscopic observation. , 1996, Applied optics.

[70]  Bingqiu Chen,et al.  Relative flux calibration for the LAMOST Spectroscopic Survey of the Galactic anticentre , 2014, 1412.6625.