The effect of aromatic fluorine substitution in l-DOPA on the in vivo behaviour of [18F]2-, [18F]5- and [18F]6-fluoro-l-DOPA in the human brain☆

[1]  B. Smart Fluorine substituent effects (on bioactivity) , 2001 .

[2]  J. Langston,et al.  Nigrostriatal Reduction of Aromatic L‐Amino Acid Decarboxylase Activity in MPTP‐Treated Squirrel Monkeys: In Vivo and In Vitro Investigations , 2000, Journal of neurochemistry.

[3]  C. Nahmias,et al.  Radiochemical and NMR spectroscopic investigation of the solvent effect on the electrophilic elemental fluorination of L-DOPA: synthesis of []5-fluoro-L-DOPA , 1999 .

[4]  A. Gjedde,et al.  Compartmental analysis of dopa decarboxylation in living brain from dynamic positron emission tomograms , 1998, Synapse.

[5]  M E Phelps,et al.  Biological imaging and the molecular basis of dopaminergic diseases. , 1997, Biochemical pharmacology.

[6]  S. Shelton,et al.  Evaluation of fluorinated m-tyrosine analogs as PET imaging agents of dopamine nerve terminals: comparison with 6-fluoroDOPA. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[7]  D. Peters,et al.  Symptoms and treatment of hydrogen fluoride injuries , 1996 .

[8]  S. Cherry,et al.  Radiofluorinated L-m-Tyrosines: New In-Vivo Probes for Central Dopamine Biochemistry , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  C Nahmias,et al.  Single-photon transmission measurements in positron tomography using 137Cs. , 1995, Physics in medicine and biology.

[10]  K. Kirk CHEMISTRY AND PHARMACOLOGY OF RING-FLUORINATED CATECHOLAMINES , 1995 .

[11]  M. Argentini,et al.  Syntheses of 5-fluoro-d/l-dopa and [18F]5-fluoro-l-dopa , 1994 .

[12]  J C Mazziotta,et al.  The effects of carbidopa administration on 6-[18F]fluoro-L-dopa kinetics in positron emission tomography. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  M. Cogoli-Greuter,et al.  Metabolism of 5-fluoro-dopa and 6-fluoro-dopa enantiomers in aggregating cell cultures of fetal rat brain. , 1992, Biochemical pharmacology.

[14]  M. Cogoli-Greuter,et al.  Comparative Metabolism of Fluorinated 3,4‐Dihydroxyphenylalanine Isomers in Aggregating Brain Cell Cultures , 1992, Journal of neurochemistry.

[15]  G. Antoni,et al.  Striatal kinetics of [11C]‐(+)‐nomifensine and 6‐[18F]fluoro‐L‐dopa in Parkinson's disease measured with positron emission tomography , 1990, Acta neurologica Scandinavica.

[16]  Paul Kinahan,et al.  Analytic 3D image reconstruction using all detected events , 1989 .

[17]  J. Mukherjee,et al.  Radiobrominated m-tyrosine analog as potential CNS L-dopa pet tracer. , 1988, Biochemical and biophysical research communications.

[18]  M. Häusser,et al.  Kinetics of in vitro decarboxylation and the in vivo metabolism of 2-18F- and 6-18F-fluorodopa in the hooded rat. , 1988, Biochemical pharmacology.

[19]  C Nahmias,et al.  A Rostrocaudal Gradient for Aromatic Acid Decarboxylase in the Human Striatum , 1987, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[20]  F. Gusovsky,et al.  Synthesis and adrenergic activity of ring-fluorinated phenylephrines. , 1986, Journal of medicinal chemistry.

[21]  R. Chirakal,et al.  High yield synthesis of 6-[18F]fluoro-L-dopa. , 1986, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[22]  C. Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Generalizations , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  K. Kirk,et al.  The effect of ring-fluorination on the rate of O-methylation of dihydroxyphenylalanine (DOPA) by catechol-O-methyltransferase: significance in the development of 18F-PETT scanning agents. , 1985, Biochemical and biophysical research communications.

[24]  K. Kirk,et al.  The chemistry and biology of ring‐fluorinated biogenic amines , 1984, Medicinal research reviews.

[25]  R. Nickles,et al.  An 18O2 target for the production of [18F]F2 , 1984 .

[26]  C. Nahmias,et al.  Dopamine visualized in the basal ganglia of living man , 1983, Nature.

[27]  I. Kopin,et al.  6-Fluorocatecholamines as false adrenergic neurotransmitters. , 1983, The Journal of pharmacology and experimental therapeutics.

[28]  Iversen Ll Neurotransmitters and CNS disease. Introduction. , 1982 .

[29]  K. Kirk,et al.  Influence of fluorine substitution on the site of enzymatic O-methylation of fluorinated norepinephrines. , 1981, Journal of medicinal chemistry.

[30]  K. Kirk,et al.  Effect of fluorine substitution on the agonist specificity of norepinephrine. , 1979, Science.

[31]  G. Firnau,et al.  Intracerebral dopamine metabolism studied by a novel radioisotope technique , 1976, The Journal of pharmacy and pharmacology.

[32]  C. Marsden,et al.  Catechol-O-methyl transferase: pharmacological aspects and physiological role. , 1975, Pharmacological reviews.

[33]  W. Oldendorf Stereospecificity of blood-brain barrier permeability to amino acids. , 1973, The American journal of physiology.

[34]  C. Nahmias,et al.  The preparation of ( 18 F)5-fluoro-DOPA with reactor-produced fluorine-18. , 1973, The International journal of applied radiation and isotopes.

[35]  O. Hornykiewicz Dopamine (3-hydroxytyramine) and brain function. , 1966, Pharmacological reviews.

[36]  T. Chruściel,et al.  The decarboxylation of amino acids related to tyrosine and their awakening action in reserpine‐treated mice , 1960, The Journal of physiology.

[37]  R. M. Adams,et al.  Electrophilic 18F from a Siemens 11 MeV proton-only cyclotron. , 1995, Nuclear medicine and biology.

[38]  N. Kitteringham,et al.  Effects of fluorine substitution on drug metabolism: pharmacological and toxicological implications. , 1994, Drug metabolism reviews.

[39]  R. Pantel,et al.  Phenol ionization in dopa determines the site of methylation by catechol-O-methyltransferase. , 1981, Molecular pharmacology.