Hard, flexible and dynamic constraint satisfaction

Constraint satisfaction is a fundamental artificial intelligence technique offering a simple yet powerful representation. An increasing amount of attention has recently been paid to the development of constraint satisfaction techniques, and it has become clear that the original formulation of a static Constraint Satisfaction Problem (CSP) with hard, imperative constraints is insufficient to model many real problems. Two important extensions to the classical CSP framework which address some of these deficiencies are flexible and dynamic constraint satisfaction. This paper examines in detail classical, flexible and dynamic CSP. It reviews the motivations behind both extensions, and describes the techniques used to solve each type of problem. The paper employs a running example throughout to illustrate the ideas presented.

[1]  Stephen Beale,et al.  Using Branch-and-Bound with Constraint Satisfaction in Optimization Problems , 1997, AAAI/IAAI.

[2]  Edward M. Reingold,et al.  Backtrack programming techniques , 1975, CACM.

[3]  Michael J. Maher,et al.  Constraint Hierarchies and Logic Programming , 1989, ICLP.

[4]  Gerhard Friedrich,et al.  Extending Constraint Satisfaction Problem Solving in Structural Design , 1992, IEA/AIE.

[5]  Henri Prade,et al.  Logical analysis of fuzzy constraint satisfaction problems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[6]  Eugene C. Freuder Synthesizing constraint expressions , 1978, CACM.

[7]  Rina Dechter,et al.  Look-Ahead Value Ordering for Constraint Satisfaction Problems , 1995, IJCAI.

[8]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..

[9]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[10]  David L. Waltz,et al.  Understanding Line drawings of Scenes with Shadows , 1975 .

[11]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[12]  Thomas Schiex,et al.  Solution Reuse in Dynamic Constraint Satisfaction Problems , 1994, AAAI.

[13]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[14]  Benjamin Kuipers,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, Autom..

[15]  Johan de Kleer,et al.  An Assumption-Based TMS , 1987, Artif. Intell..

[16]  Qiang Shen,et al.  Fuzzy qualitative simulation , 1993, IEEE Trans. Syst. Man Cybern..

[17]  Pedro Meseguer,et al.  Constraint Satisfaction Problems: An Overview , 1989, AI Commun..

[18]  J. Gaschnig Performance measurement and analysis of certain search algorithms. , 1979 .

[19]  Christian Bessiere,et al.  Arc-Consistency and Arc-Consistency Again , 1993, Artif. Intell..

[20]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[22]  Drew McDermott,et al.  A General Framework for Reason Maintenance , 1991, Artif. Intell..

[23]  Alan K. Mackworth On Reading Sketch Maps , 1977, IJCAI.

[24]  Mark S. Fox,et al.  Constraint-Directed Search: A Case Study of Job-Shop Scheduling , 1987 .

[25]  Rina Dechter,et al.  Experimental Evaluation of Preprocessing Techniques in Constraint Satisfaction Problems , 1989, IJCAI.

[26]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[27]  Peter van Beek,et al.  A theoretical evaluation of selected backtracking algorithms , 1995, IJCAI 1995.

[28]  Rina Dechter,et al.  Network-Based Heuristics for Constraint-Satisfaction Problems , 1987, Artif. Intell..

[29]  Rina Dechter,et al.  Dead-End Driven Learning , 1994, AAAI.

[30]  Mark Stefik,et al.  Planning with Constraints (MOLGEN: Part 1) , 1981, Artif. Intell..

[31]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[32]  Javier Larrosa,et al.  Solving fuzzy constraint satisfaction problems , 1997, Proceedings of 6th International Fuzzy Systems Conference.

[33]  Andrew B. Baker,et al.  The Hazards of Fancy Backtracking , 1994, AAAI.

[34]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[35]  Chia-Hoang Lee,et al.  Comments on Mohr and Henderson's Path Consistency Algorithm , 1988, Artif. Intell..

[36]  Eugene C. Freuder,et al.  Stable Solutions for Dynamic Constraint Satisfaction Problems , 1998, CP.

[37]  Jon Doyle,et al.  A Truth Maintenance System , 1979, Artif. Intell..

[38]  Martha E. Pollack,et al.  Passive and active decision postponement in plan generation , 1996 .

[39]  Rina Dechter,et al.  Tree Clustering for Constraint Networks , 1989, Artif. Intell..

[40]  Eugene C. Freuder,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[41]  Didier Dubois,et al.  Fuzzy constraints in job-shop scheduling , 1995, J. Intell. Manuf..

[42]  Didier Dubois,et al.  Refinements of the maximin approach to decision-making in a fuzzy environment , 1996, Fuzzy Sets Syst..

[43]  Richard J. Wallace,et al.  Enhancements of Branch and Bound Methods for the Maximal Constraint Satisfaction Problem , 1996, AAAI/IAAI, Vol. 1.

[44]  Thomas Schiex,et al.  Nogood Recording for static and dynamic constraint satisfaction problems , 1993, Proceedings of 1993 IEEE Conference on Tools with Al (TAI-93).

[45]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[46]  Rina Dechter,et al.  Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposition , 1990, Artif. Intell..

[47]  Martin C. Cooper An Optimal k-Consistency Algorithm , 1989, Artif. Intell..

[48]  Thomas Schiex,et al.  Possibilistic Constraint Satisfaction Problems or "How to Handle Soft Constraints?" , 1992, UAI.

[49]  Rina Dechter,et al.  Belief Maintenance in Dynamic Constraint Networks , 1988, AAAI.

[50]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[51]  Eugene C. Freuder A Sufficient Condition for Backtrack-Free Search , 1982, JACM.

[52]  Umberto Bertelè,et al.  Nonserial Dynamic Programming , 1972 .

[53]  Jérôme Lang,et al.  Possibilistic logic as a logical framework for min-max discrete optimisation problems and prioritized constraints , 1991, FAIR.

[54]  Qiang Shen,et al.  Extending Qualitative Modelling for Simulation of Time-Delayed Behaviour , 1998 .

[55]  Christian Bessiere,et al.  Using Inference to Reduce Arc Consistency Computation , 1995, IJCAI.

[56]  Eugene C. Freuder,et al.  The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems , 1985, Artif. Intell..

[57]  Thomas C. Henderson,et al.  Arc and Path Consistency Revisited , 1986, Artif. Intell..