Generalized linear models with functional predictors

Summary. We present a technique for extending generalized linear models to the situation where some of the predictor variables are observations from a curve or function. The technique is particularly useful when only fragments of each curve have been observed. We demonstrate, on both simulated and real data sets, how this approach can be used to perform linear, logistic and censored regression with functional predictors. In addition, we show how functional principal components can be used to gain insight into the relationship between the response and functional predictors. Finally, we extend the methodology to apply generalized linear models and principal components to standard missing data problems.

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  G. J. Hahn,et al.  A Simple Method for Regression Analysis With Censored Data , 1979 .

[3]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[4]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[5]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[6]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[7]  M. Kenward,et al.  Design and Analysis of Cross-Over Trials , 1989 .

[8]  P. McCullagh,et al.  Generalized Linear Models, 2nd Edn. , 1990 .

[9]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[10]  T. Hastie,et al.  [A Statistical View of Some Chemometrics Regression Tools]: Discussion , 1993 .

[11]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[12]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[13]  Peter J Green,et al.  Lead discussion on 'Varying coefficient models' by Hastie & Tibshirani , 1993 .

[14]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[15]  Peter J. Diggle,et al.  RATES OF CONVERGENCE IN SEMI‐PARAMETRIC MODELLING OF LONGITUDINAL DATA , 1994 .

[16]  B. Silverman,et al.  Nonparametric regression and generalized linear models , 1994 .

[17]  J. C. van Houwelingen,et al.  Logistic Regression for Correlated Binary Data , 1994 .

[18]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[19]  B. Silverman,et al.  Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[20]  田中 豊 Multivariate Statistical Modelling Based on Generalized Linear Models/Ludwig Fahrmeir,Gerhard Tutz(1994) , 1995 .

[21]  Robert E. Weiss,et al.  An Analysis of Paediatric Cd4 Counts for Acquired Immune Deficiency Syndrome Using Flexible Random Curves , 1996 .

[22]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[23]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[24]  B. Everitt,et al.  Analysis of longitudinal data , 1998, British Journal of Psychiatry.

[25]  Catherine A. Sugar,et al.  Principal component models for sparse functional data , 1999 .

[26]  Gareth M. James,et al.  Functional linear discriminant analysis for irregularly sampled curves , 2001 .

[27]  G. Wahba,et al.  Smoothing Spline ANOVA for Multivariate Bernoulli Observations With Application to Ophthalmology Data , 2001 .

[28]  Zhiliang Ying,et al.  Semiparametric and Nonparametric Regression Analysis of Longitudinal Data , 2001 .

[29]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.