Scanning photocurrent microscopy reveals electron-hole asymmetry in ionic liquid-gated WS2 transistors

We perform scanning photocurrent microscopy on WS2 ionic liquid-gated field effect transistors exhibiting high-quality ambipolar transport. By properly biasing the gate electrode, we can invert the sign of the photocurrent showing that the minority photocarriers are either electrons or holes. Both in the electron- and hole-doping regimes the photocurrent decays exponentially as a function of the distance between the illumination spot and the nearest contact, in agreement with a two-terminal Schottky-barrier device model. This allows us to compare the value and the doping dependence of the diffusion length of the minority electrons and holes on a same sample. Interestingly, the diffusion length of the minority carriers is several times larger in the hole accumulation regime than in the electron accumulation regime, pointing out an electron-hole asymmetry in WS2.

[1]  Dong Yu,et al.  SCANNING PHOTOCURRENT MICROSCOPY IN SEMICONDUCTOR NANOSTRUCTURES , 2013 .

[2]  L. Lauhon,et al.  Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy , 2013, 1307.5032.

[3]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[4]  G. Steele,et al.  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[5]  Bin Yu,et al.  Schottky-barrier solar cell based on layered semiconductor tungsten disulfide nanofilm , 2012 .

[6]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[7]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[8]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[9]  Dong Yu,et al.  Controlled ambipolar doping and gate voltage dependent carrier diffusion length in lead sulfide nanowires. , 2012, Nano letters.

[10]  A. Morpurgo,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[11]  H. Zeng,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[12]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[13]  A. Seabaugh,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[14]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[15]  Rong Zhang,et al.  Electrothermal dynamics of semiconductor nanowires under local carrier modulation. , 2011, Nano letters.

[16]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[17]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[18]  Woo-Seok Cho,et al.  Thermal and Electronic Properties of Exfoliated Metal Chalcogenides , 2010 .

[19]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[20]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[21]  A. M. van der Zande,et al.  Photo-thermoelectric effect at a graphene interface junction. , 2009, Nano letters.

[22]  G. Schatz The journal of physical chemistry letters , 2009 .

[23]  F. Xia,et al.  Photocurrent imaging and efficient photon detection in a graphene transistor. , 2009, Nano letters.

[24]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[25]  H. Asanuma,et al.  Electric Double Layer Transistor of Organic Semiconductor Crystals in a Four-Probe Configuration , 2007 .

[26]  Haruhiko Asanuma,et al.  Electrolyte-gated charge accumulation in organic single crystals , 2006 .

[27]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[28]  L. Lauhon,et al.  Local photocurrent mapping as a probe of contact effects and charge carrier transport in semiconductor nanowire devices , 2006 .

[29]  Teri W. Odom,et al.  Near-field scanning photocurrent microscopy of a nanowire photodetector , 2005 .

[30]  Jiwoong Park,et al.  Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. , 2005, Nano letters.

[31]  Matthew J. Panzer,et al.  Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric , 2005 .

[32]  Klaus Kern,et al.  Photocurrent imaging of charge transport barriers in carbon nanotube devices. , 2005, Nano letters.

[33]  Klaus Kern,et al.  Photoelectronic transport imaging of individual semiconducting carbon nanotubes , 2004 .

[34]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[35]  J. Bernède,et al.  MS2 (M = W, Mo) photosensitive thin films for solar cells , 1997 .

[36]  B. Parkinson,et al.  Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .

[37]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[38]  H. Tributsch Electrochemical solar cells based on layer-type transition metal compounds: Performance of electrode material , 1979 .

[39]  G. Diemer Nature of an ohmic metal-semiconductor contact , 1956 .

[40]  W. Marsden I and J , 2012 .

[41]  Young Jun Seo,et al.  Bulletin of the Korean Chemical Society , 2007 .

[42]  Shu-Tong Chang,et al.  (Japanese Journal of Applied Physics,46(4B):2107-2111)Impact of Source/Drain Si1 yCy Stressors on Silicon-on-Insulator N-type Metal-Oxide-Semiconductor Field-Effect Transistors , 2007 .

[43]  B. Scrosati,et al.  Photoelectrochemical Solar Cells Based on Molybdenum and Tungsten Dichalcogenides , 1992 .

[44]  Evan Franklin,et al.  Solar Energy Materials and Solar Cells , 2022 .

[45]  THE JOURNAL OF PHYSICAL CHEMISTRY B , 2022 .