Entanglement witnesses for indistinguishable particles

We study the problem of witnessing entanglement among indistinguishable particles. For this purpose, we derive a set of equations which results in necessary and sufficient conditions for probing multipartite entanglement between arbitrary systems of Bosons or Fermions. The solution of these equations yields the construction of optimal entanglement witnesses for partial and full entanglement in discrete and continuous variable systems. Our approach unifies the verification of entanglement for distinguishable and indistinguishable particles. We provide general solutions for certain observables to study quantum entanglement in systems with different quantum statistics in noisy environments.

[1]  J. Sperling,et al.  Determination of the Schmidt number , 2011, 1103.1287.

[2]  Geza Toth Entanglement witnesses in spin models , 2005 .

[3]  Paolo Bordone,et al.  Measure of tripartite entanglement in bosonic and fermionic systems , 2011 .

[4]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[5]  S. Pádua,et al.  Detection of nonlocal superpositions , 2014 .

[6]  Roberto Floreanini,et al.  Entanglement of Identical Particles , 2014, Open Syst. Inf. Dyn..

[7]  C. Fabre,et al.  Full multipartite entanglement of frequency-comb Gaussian states. , 2014, Physical review letters.

[8]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  T. Ichikawa,et al.  Universal separability and entanglement in identical-particle systems , 2013, 1302.3509.

[10]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[11]  W. Vogel,et al.  Necessary and sufficient conditions for bipartite entanglement , 2008, 0805.1318.

[12]  Aravind Chiruvelli,et al.  Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.

[13]  J. M. Donohue,et al.  Reliable entanglement verification , 2013, 1302.1182.

[14]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[15]  M. Horodecki,et al.  Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps , 2000, quant-ph/0006071.

[16]  J. Sperling,et al.  Structural quantification of entanglement. , 2014, Physical review letters.

[17]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[18]  M. Kus,et al.  Entanglement for multipartite systems of indistinguishable particles , 2010, 1012.0758.

[19]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[20]  Jay M. Gambetta,et al.  Preparation and measurement of three-qubit entanglement in a superconducting circuit , 2010, Nature.

[21]  Tsubasa Ichikawa,et al.  Entanglement of indistinguishable particles , 2010, 1009.4147.

[22]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[24]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[25]  M. Lewenstein,et al.  Entangled symmetric states of N qubits with all positive partial transpositions , 2012, 1206.3088.

[26]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[27]  O. W. Greenberg,et al.  Symmetrization Postulate and Its Experimental Foundation , 1964 .

[28]  J I Cirac,et al.  Spin squeezing inequalities and entanglement of N qubit states. , 2005, Physical review letters.

[29]  M B Plenio,et al.  Extracting entanglement from identical particles. , 2013, Physical review letters.

[30]  Otfried Gühne,et al.  Increasing the statistical significance of entanglement detection in experiments. , 2009, Physical review letters.

[31]  U. Marzolino,et al.  Entanglement robustness and geometry in systems of identical particles , 2012, 1204.3746.

[32]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[33]  Reinaldo O. Vianna,et al.  Quantumness of correlations in indistinguishable particles , 2014 .

[34]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[35]  U. Marzolino,et al.  Bipartite entanglement in systems of identical particles: The partial transposition criterion , 2012, 1202.2993.

[36]  G. Tóth,et al.  Entanglement and extreme spin squeezing for a fluctuating number of indistinguishable particles , 2012, 1204.5329.

[37]  M. Ku's,et al.  Universal framework for entanglement detection , 2013, 1306.2376.

[38]  S. Mazur Über konvexe Mengen in linearen normierten Räumen , 1933 .

[39]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[40]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[41]  Thiago O. Maciel,et al.  Quantifying quantum correlations in fermionic systems using witness operators , 2012, Quantum Inf. Process..

[42]  GianCarlo Ghirardi,et al.  General criterion for the entanglement of two indistinguishable particles (10 pages) , 2004 .

[43]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[44]  A. Plastino,et al.  Dynamics of entanglement in systems of identical fermions undergoing decoherence , 2015, 1501.01916.

[45]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[46]  L. You,et al.  Quantum correlations in two-boson wave functions , 2001 .

[47]  U. Marzolino,et al.  Sub-shot-noise quantum metrology with entangled identical particles , 2010, 1001.3313.

[48]  J. Myrheim,et al.  On the theory of identical particles , 1977 .

[49]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[50]  J. Sperling,et al.  Multipartite entanglement witnesses. , 2013, Physical review letters.

[51]  Daniel Cavalcanti,et al.  Useful entanglement from the Pauli principle , 2007 .

[52]  J. Ignacio Cirac,et al.  Quantum correlations in two-fermion systems , 2001 .

[53]  G. Vallone,et al.  Hyperentanglement of two photons in three degrees of freedom , 2008, 0810.4461.

[54]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[55]  Reinaldo O. Vianna,et al.  Computable measures for the entanglement of indistinguishable particles , 2012, 1211.1886.

[56]  Luca Marinatto,et al.  Entanglement and Properties of Composite Quantum Systems: A Conceptual and Mathematical Analysis , 2001 .

[57]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[58]  A. P. Balachandran,et al.  Entanglement and particle identity: a unifying approach. , 2013, Physical review letters.