Second-Order Logical Relations (Extended Abstract)

Logical relations are a generalization of homomorphisms between models of typed lambda calculus. We define logical relations for second-order typed lambda calculus and use these relations to give a semantic characterization of second-order lambda definability. Logical relations are also used to state and prove a general representation independence theorem. Representation independence implies that the meanings of expressions do not depend on whether true is represented by 1 and false by 0, as long as all the functions that manipulate truth values are represented correctly.

[1]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[2]  Daniel Leivant,et al.  Polymorphic type inference , 1983, POPL '83.

[3]  Kim B. Bruce,et al.  The Semantics of Second Order Polymorphic Lambda Calculus , 1984, Semantics of Data Types.

[4]  H. Friedman Equality between functionals , 1975 .

[5]  John C. Mitchell,et al.  Abstract types have existential types , 1985, POPL.

[6]  Christopher T. Haynes A Theory of Data Type Representation Independence , 1984, Semantics of Data Types.

[7]  John Mitchell,et al.  Type Inference and Type Containment , 1984, Semantics of Data Types.

[8]  Gordon D. Plotkin,et al.  An ideal model for recursive polymorphic types , 1984, Inf. Control..

[9]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[10]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[11]  John C. Mitchell,et al.  Semantic Models for Second-Order Lambda Calculus , 1984, FOCS.

[12]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[13]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[14]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[15]  Nancy Jean Mccracken,et al.  An investigation of a programming language with a polymorphic type structure. , 1979 .

[16]  Ravi Sethi,et al.  A semantic model of types for applicative languages , 1982, LFP '82.

[17]  John C. Reynolds,et al.  Polymorphism is not Set-Theoretic , 1984, Semantics of Data Types.

[18]  Nancy McCracken,et al.  The Typechecking of Programs with Implicit Type Structure , 1984, Semantics of Data Types.

[19]  Ketan Mulmuley A Semantic Characterization of Full Abstraction for Typed Lambda Calculi , 1984, FOCS.

[20]  Richard Statman,et al.  Logical Relations and the Typed lambda-Calculus , 1985, Inf. Control..

[21]  John C. Reynolds,et al.  Towards a theory of type structure , 1974, Symposium on Programming.

[22]  James E. Donahue On the Semantics of "Data Type" , 1977, SIAM J. Comput..