Confidence interval of generalized Taguchi index

In quality control, such as other statistical problems, we may confront imprecise concepts. One case is a situation in which specification limits are two fuzzy sets. In such a fuzzy environment, the product is not qualified with a two valued Boolean view, but to some degree depending on the quality level of the product and the strictness of the decision maker. This matter can be cause to a justified judgment in decision making on manufacturing processes. The generalized process capability indices $C_{\widetilde{p}}$, $C_{\widetilde{pk}}$ and $C_{\widetilde{pm}}$ can be helpful and necessary for measuring the fuzzy quality in an in-control process. In this paper, the generalized Taguchi index $C_{\widetilde{pm}}$ is proposed to provide an assessment of the ability of the fuzzy process to be clustered around the target value. Considering fuzzy specification limits we present four approximate 1001-γ% confidence intervals for the generalized process capability index $C_{\widetilde{pm}}$ in this paper. Then, we obtain several fast computable 1001-γ% confidence intervals for $C_{\widetilde{pm}}$, where the fuzzy specification limits are linear, normal or elliptic. An industrial example is given to show the performance of the proposed method.

[1]  A. Cohen An Introduction to Probability Theory and Mathematical Statistics , 1979 .

[2]  A. Parchami,et al.  A new generation of process capability indices , 2010 .

[3]  N. L. Johnson,et al.  Distributional and Inferential Properties of Process Capability Indices , 1992 .

[4]  Russell A. Boyles,et al.  The Taguchi capability index , 1991 .

[5]  Fred A. Spiring,et al.  A New Measure of Process Capability: Cpm , 1988 .

[6]  Abbas Parchami,et al.  Fuzzy confidence interval for fuzzy process capability index , 2006, J. Intell. Fuzzy Syst..

[7]  Lora S. Zimmer,et al.  Process Capability Indices in Theory and Practice , 2000, Technometrics.

[8]  Abbas Parchami,et al.  Fuzzy estimation for process capability indices , 2007, Inf. Sci..

[9]  Abbas Parchami,et al.  Construction of p , 2009, Inf. Sci..

[10]  Cengiz Kahraman,et al.  Process capability analyses with fuzzy parameters , 2011, Expert Syst. Appl..

[11]  Cengiz Kahraman,et al.  Fuzzy robust process capability indices for risk assessment of air pollution , 2009 .

[12]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[13]  M. Hadi Mashinchi,et al.  Approximate confidence interval for generalized Taguchi process capability index , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[14]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[15]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[16]  Chang-Chun Tsai,et al.  Making decision to evaluate process capability index Cp with fuzzy numbers , 2006 .

[17]  Winson Taam,et al.  Inference on the capability index: Cpm , 1993 .

[18]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[19]  Guo Jin-li,et al.  A New Measure of Process Capability , 2008 .

[20]  Ming-Hung Shu,et al.  Fuzzy inference to assess manufacturing process capability with imprecise data , 2008, Eur. J. Oper. Res..

[21]  Jong-Yih Lin,et al.  Fuzzy Evaluation of Process Capability for Bigger-the-Best Type Products , 2003 .

[22]  Hung T. Nguyen,et al.  A First Course in Fuzzy Logic , 1996 .

[23]  Y. Cen,et al.  Fuzzy quality and analysis on fuzzy probability , 1996 .

[24]  Yongsheng Gao,et al.  Optimal Process Tolerance Balancing Based on Process Capabilities , 2003 .

[25]  A. Parchami,et al.  Testing the Capability of Fuzzy Processes , 2009 .

[26]  C. Kahraman,et al.  Fuzzy process capability indices for quality control of irrigation water , 2009 .

[27]  Zeinab Ramezani,et al.  Fuzzy confidence regions for the Taguchi capability index , 2011, Int. J. Syst. Sci..

[28]  Cengiz Kahraman,et al.  Development of fuzzy process accuracy index for decision making problems , 2010, Inf. Sci..

[29]  Hong Tau Lee,et al.  Cpk index estimation using fuzzy numbers , 2001, Eur. J. Oper. Res..

[30]  E. B. Wilson,et al.  The Distribution of Chi-Square. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Jong-Yih Lin,et al.  Selecting a supplier by fuzzy evaluation of capability indices Cpm , 2003 .

[32]  Cengiz Kahraman,et al.  Fuzzy process capability analyses: An application to teaching processes , 2008, J. Intell. Fuzzy Syst..

[33]  Wen Lea Pearn,et al.  A Bayesian approach for assessing process precision based on multiple samples , 2005, Eur. J. Oper. Res..

[34]  Samuel Kotz,et al.  Process Capability Indices , 1993 .

[35]  P. Patnaik THE NON-CENTRAL χ2- AND F-DISTRIBUTIONS AND THEIR APPLICATIONS , 1949 .

[36]  Victor E. Kane,et al.  Process Capability Indices , 1986 .

[37]  R. Viertl On the Future of Data Analysis , 2002 .