Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors.

We propose to construct electron correlation methods that are scalable in both molecule size and aggregated parallel computational power, in the sense that the total elapsed time of a calculation becomes nearly independent of the molecular size when the number of processors grows linearly with the molecular size. This is shown to be possible by exploiting a combination of local approximations and parallel algorithms. The concept is demonstrated with a linear scaling pair natural orbital local second-order Møller-Plesset perturbation theory (PNO-LMP2) method. In this method, both the wave function manifold and the integrals are transformed incrementally from projected atomic orbitals (PAOs) first to orbital-specific virtuals (OSVs) and finally to pair natural orbitals (PNOs), which allow for minimum domain sizes and fine-grained accuracy control using very few parameters. A parallel algorithm design is discussed, which is efficient for both small and large molecules, and numbers of processors, although true inverse-linear scaling with compute power is not yet reached in all cases. Initial applications to reactions involving large molecules reveal surprisingly large effects of dispersion energy contributions as well as large intramolecular basis set superposition errors in canonical MP2 calculations. In order to account for the dispersion effects, the usual selection of PNOs on the basis of natural occupation numbers turns out to be insufficient, and a new energy-based criterion is proposed. If explicitly correlated (F12) terms are included, fast convergence to the MP2 complete basis set (CBS) limit is achieved. For the studied reactions, the PNO-LMP2-F12 results deviate from the canonical MP2/CBS and MP2-F12 values by <1 kJ mol(-1), using triple-ζ (VTZ-F12) basis sets.

[1]  A. Köster,et al.  Robust and efficient variational fitting of Fock exchange. , 2014, Journal of Chemical Physics.

[2]  D. Tew,et al.  Explicitly correlated PNO-MP2 and PNO-CCSD and their application to the S66 set and large molecular systems. , 2014, Physical chemistry chemical physics : PCCP.

[3]  B. List,et al.  Auf dem Weg zur Hochleistungs-Lewis-Säure-Organokatalyse† , 2014 .

[4]  Frank Neese,et al.  Geminal-spanning orbitals make explicitly correlated reduced-scaling coupled-cluster methods robust, yet simple. , 2014, The Journal of chemical physics.

[5]  C. Hättig,et al.  A pair natural orbital based implementation of ADC(2)-x: Perspectives and challenges for response methods for singly and doubly excited states in large molecules , 2014 .

[6]  T. Janowski Near Equivalence of Intrinsic Atomic Orbitals and Quasiatomic Orbitals. , 2014, Journal of chemical theory and computation.

[7]  H. Jónsson,et al.  Pipek-Mezey Orbital Localization Using Various Partial Charge Estimates. , 2014, Journal of chemical theory and computation.

[8]  Michael W. Schmidt,et al.  A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions. , 2013, The Journal of chemical physics.

[9]  Denis Usvyat,et al.  Linear-scaling explicitly correlated treatment of solids: periodic local MP2-F12 method. , 2013, The Journal of chemical physics.

[10]  Frank Neese,et al.  Natural triple excitations in local coupled cluster calculations with pair natural orbitals. , 2013, The Journal of chemical physics.

[11]  C. Hättig,et al.  A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies. , 2013, The Journal of chemical physics.

[12]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[13]  J. VandeVondele,et al.  Electron Correlation in the Condensed Phase from a Resolution of Identity Approach Based on the Gaussian and Plane Waves Scheme. , 2013, Journal of chemical theory and computation.

[14]  Gunnar Schmitz,et al.  A scaling PNO–MP2 method using a hybrid OSV–PNO approach with an iterative direct generation of OSVs† , 2013 .

[15]  Kasper Kristensen,et al.  The divide–expand–consolidate MP2 scheme goes massively parallel , 2013 .

[16]  Jeremiah J. Wilke,et al.  Explicitly correlated atomic orbital basis second order Møller-Plesset theory. , 2013, The Journal of chemical physics.

[17]  Frederick R Manby,et al.  The orbital-specific virtual local triples correction: OSV-L(T). , 2013, The Journal of chemical physics.

[18]  D. Tew,et al.  Pair natural orbitals in explicitly correlated second-order moller-plesset theory , 2013 .

[19]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[20]  J. Kussmann,et al.  Efficient distance-including integral screening in linear-scaling Møller-Plesset perturbation theory. , 2013, The Journal of chemical physics.

[21]  F. Neese,et al.  The resolution of identity and chain of spheres approximations for the LPNO-CCSD singles Fock term , 2012 .

[22]  Thomas Kjærgaard,et al.  Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme. , 2012, The Journal of chemical physics.

[23]  Hans-Joachim Werner,et al.  Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. , 2012, Physical chemistry chemical physics : PCCP.

[24]  Wei Li,et al.  A refined cluster-in-molecule local correlation approach for predicting the relative energies of large systems. , 2012, Physical chemistry chemical physics : PCCP.

[25]  Frederick R Manby,et al.  The orbital-specific-virtual local coupled cluster singles and doubles method. , 2012, The Journal of chemical physics.

[26]  Frederick R Manby,et al.  Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory. , 2012, The Journal of chemical physics.

[27]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[28]  Poul Jørgensen,et al.  The divide-expand-consolidate family of coupled cluster methods: numerical illustrations using second order Møller-Plesset perturbation theory. , 2012, The Journal of chemical physics.

[29]  Christof Hättig,et al.  Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals. , 2011, The Journal of chemical physics.

[30]  Christof Hättig,et al.  Local pair natural orbitals for excited states. , 2011, The Journal of chemical physics.

[31]  F. Neese,et al.  Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals. , 2011, The Journal of chemical physics.

[32]  Hans-Joachim Werner,et al.  An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit. , 2011, The Journal of chemical physics.

[33]  Hans-Joachim Werner,et al.  An efficient local coupled cluster method for accurate thermochemistry of large systems. , 2011, The Journal of chemical physics.

[34]  Lorenzo Maschio,et al.  Local MP2 with Density Fitting for Periodic Systems: A Parallel Implementation. , 2011, Journal of chemical theory and computation.

[35]  Marcin Ziółkowski,et al.  A Locality Analysis of the Divide-Expand-Consolidate Coupled Cluster Amplitude Equations. , 2011, Journal of chemical theory and computation.

[36]  Dimitrios G Liakos,et al.  Weak Molecular Interactions Studied with Parallel Implementations of the Local Pair Natural Orbital Coupled Pair and Coupled Cluster Methods. , 2011, Journal of chemical theory and computation.

[37]  Frederick R Manby,et al.  Tensor factorizations of local second-order Møller-Plesset theory. , 2010, The Journal of chemical physics.

[38]  Frederick R. Manby,et al.  Explicitly correlated coupled cluster methods with pair-specific geminals , 2011 .

[39]  Daniel Kats,et al.  Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties. , 2010, The Journal of chemical physics.

[40]  Wei Li,et al.  Improved design of orbital domains within the cluster-in-molecule local correlation framework: single-environment cluster-in-molecule ansatz and its application to local coupled-cluster approach with singles and doubles. , 2010, The journal of physical chemistry. A.

[41]  Branislav Jansík,et al.  Linear scaling coupled cluster method with correlation energy based error control. , 2010, The Journal of chemical physics.

[42]  P. Piecuch,et al.  Multilevel extension of the cluster-in-molecule local correlation methodology: merging coupled-cluster and Møller-Plesset perturbation theories. , 2010, The journal of physical chemistry. A.

[43]  D. Tew,et al.  Communications: Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. , 2010, The Journal of chemical physics.

[44]  Peter Chen,et al.  Experimental and theoretical study of a gold(I) aminonitrene complex in the gas phase. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[45]  Christian Ochsenfeld,et al.  A Linear-Scaling MP2 Method for Large Molecules by Rigorous Integral-Screening Criteria , 2010 .

[46]  M. Schütz,et al.  Second Order Local Møller-Plesset Perturbation Theory for Periodic Systems: the CRYSCOR Code , 2010 .

[47]  Hans-Joachim Werner,et al.  Benchmark Studies for Explicitly Correlated Perturbation- and Coupled Cluster Theories. javascript:filterformular(´3´) , 2010 .

[48]  F. Manby,et al.  Efficient Explicitly Correlated Coupled-Cluster Approximations , 2010 .

[49]  Trygve Helgaker,et al.  Implementation of the incremental scheme for one-electron first-order properties in coupled-cluster theory. , 2009, The Journal of chemical physics.

[50]  Martin Schütz,et al.  A multistate local coupled cluster CC2 response method based on the Laplace transform. , 2009, The Journal of chemical physics.

[51]  E. Jacobsen,et al.  Mechanism of amido-thiourea catalyzed enantioselective imine hydrocyanation: transition state stabilization via multiple non-covalent interactions. , 2009, Journal of the American Chemical Society.

[52]  Wei Li,et al.  Local correlation calculations using standard and renormalized coupled-cluster approaches. , 2009, The Journal of chemical physics.

[53]  Dimitrios G Liakos,et al.  Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. , 2009, The Journal of chemical physics.

[54]  Hans-Joachim Werner,et al.  Local explicitly correlated coupled-cluster methods: efficient removal of the basis set incompleteness and domain errors. , 2009, The Journal of chemical physics.

[55]  Wilfried Meyer,et al.  Ionization energies of water from PNO‐CI calculations , 2009 .

[56]  F. Neese,et al.  Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. , 2009, The Journal of chemical physics.

[57]  Jörg Kussmann,et al.  Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria. , 2009, The Journal of chemical physics.

[58]  S. Ten-no,et al.  Implementation of the CCSD(T)(F12) method using numerical quadratures , 2009 .

[59]  Frederick R Manby,et al.  Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. , 2009, The Journal of chemical physics.

[60]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[61]  So Hirata,et al.  Higher-order explicitly correlated coupled-cluster methods. , 2009, The Journal of chemical physics.

[62]  Michael Dolg,et al.  Fully Automated Incremental Evaluation of MP2 and CCSD(T) Energies: Application to Water Clusters. , 2009, Journal of chemical theory and computation.

[63]  Michael Dolg,et al.  Implementation and performance of a domain-specific basis set incremental approach for correlation energies: applications to hydrocarbons and a glycine oligomer. , 2008, The Journal of chemical physics.

[64]  Kirk A Peterson,et al.  Optimized auxiliary basis sets for explicitly correlated methods. , 2008, The Journal of chemical physics.

[65]  John A. Parkhill,et al.  Penalty functions for combining coupled-cluster and perturbation amplitudes in local correlation methods with optimized orbitals , 2008 .

[66]  Hans-Joachim Werner,et al.  Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[67]  So Hirata,et al.  Explicitly correlated coupled-cluster singles and doubles method based on complete diagrammatic equations. , 2008, The Journal of chemical physics.

[68]  Edward F. Valeev,et al.  Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 model. , 2008, The Journal of chemical physics.

[69]  Roland Lindh,et al.  Linear scaling multireference singles and doubles configuration interaction. , 2008, The Journal of chemical physics.

[70]  R. Bartlett,et al.  Natural linear-scaled coupled-cluster theory with local transferable triple excitations: applications to peptides. , 2008, The journal of physical chemistry. A.

[71]  J. Noga,et al.  Implementation of the CCSD(T)-F12 method using cusp conditions. , 2008, Physical chemistry chemical physics : PCCP.

[72]  Edward F. Valeev,et al.  Variational formulation of perturbative explicitly-correlated coupled-cluster methods. , 2008, Physical chemistry chemical physics : PCCP.

[73]  Edward F. Valeev,et al.  Equations of explicitly-correlated coupled-cluster methods. , 2008, Physical chemistry chemical physics : PCCP.

[74]  J. Noga,et al.  Explicitly correlated coupled cluster F12 theory with single and double excitations. , 2008, The Journal of chemical physics.

[75]  Hans-Joachim Werner,et al.  Explicitly correlated RMP2 for high-spin open-shell reference states. , 2008, The Journal of chemical physics.

[76]  Hans-Joachim Werner,et al.  Correlation regions within a localized molecular orbital approach. , 2008, The Journal of chemical physics.

[77]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[78]  D. Tew,et al.  A diagonal orbital-invariant explicitly-correlated coupled-cluster method , 2008 .

[79]  Walter Thiel,et al.  Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase. , 2008, The Journal of chemical physics.

[80]  Edward F. Valeev,et al.  Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. , 2008, Physical chemistry chemical physics : PCCP.

[81]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[82]  Ricardo A. Mata,et al.  Local correlation methods with a natural localized molecular orbital basis , 2007 .

[83]  J. Noga,et al.  Second order explicitly correlated R12 theory revisited: a second quantization framework for treatment of the operators' partitionings. , 2007, The Journal of chemical physics.

[84]  Frederick R Manby,et al.  General orbital invariant MP2-F12 theory. , 2007, The Journal of chemical physics.

[85]  Michael Dolg,et al.  Fully automated implementation of the incremental scheme: application to CCSD energies for hydrocarbons and transition metal compounds. , 2007, The Journal of chemical physics.

[86]  Christof Hättig,et al.  Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets , 2007 .

[87]  Hans-Joachim Werner,et al.  Calculation of smooth potential energy surfaces using local electron correlation methods. , 2006, The Journal of chemical physics.

[88]  M. Nooijen,et al.  Dynamically screened local correlation method using enveloping localized orbitals. , 2006, The Journal of chemical physics.

[89]  Jarek Nieplocha,et al.  Advances, Applications and Performance of the Global Arrays Shared Memory Programming Toolkit , 2006, Int. J. High Perform. Comput. Appl..

[90]  Frederick R Manby,et al.  Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor. , 2006, The Journal of chemical physics.

[91]  Guntram Rauhut,et al.  Impact of local and density fitting approximations on harmonic vibrational frequencies. , 2006, The journal of physical chemistry. A.

[92]  W. Klopper,et al.  Inclusion of the (T) triples correction into the linear‐r12 corrected coupled‐cluster model CCSD(R12) , 2006 .

[93]  H. Werner,et al.  Chapter 4 On the Selection of Domains and Orbital Pairs in Local Correlation Treatments , 2006 .

[94]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[95]  Amir Karton,et al.  Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267] , 2005, physics/0509216.

[96]  D. Tew,et al.  New correlation factors for explicitly correlated electronic wave functions. , 2005, The Journal of chemical physics.

[97]  Martin Head-Gordon,et al.  A local correlation model that yields intrinsically smooth potential-energy surfaces. , 2005, The Journal of chemical physics.

[98]  Martin Head-Gordon,et al.  A Resolution-Of-The-Identity Implementation of the Local Triatomics-In-Molecules Model for Second-Order Møller-Plesset Perturbation Theory with Application to Alanine Tetrapeptide Conformational Energies. , 2005, Journal of chemical theory and computation.

[99]  W. Klopper,et al.  Coupled-cluster theory with simplified linear-r(12) corrections: the CCSD(R12) model. , 2005, The Journal of chemical physics.

[100]  A. Dutoi,et al.  Accurate local approximations to the triples correlation energy: formulation, implementation and tests of 5th-order scaling models , 2005 .

[101]  J. Noga,et al.  Alternative formulation of the matrix elements in MP2‐R12 theory , 2005 .

[102]  T. Daniel Crawford,et al.  Local correlation in coupled cluster calculations of molecular response properties , 2004 .

[103]  Frederick R. Manby,et al.  Fast Hartree–Fock theory using local density fitting approximations , 2004 .

[104]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[105]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[106]  F. Manby,et al.  An explicitly correlated second order Møller-Plesset theory using a frozen Gaussian geminal. , 2004, The Journal of chemical physics.

[107]  Edward F. Valeev,et al.  Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation. , 2004, The Journal of chemical physics.

[108]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[109]  Frederick R Manby,et al.  Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. , 2004, The Journal of chemical physics.

[110]  C Z Wang,et al.  Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals. , 2004, The Journal of chemical physics.

[111]  Frederick R. Manby,et al.  Density fitting in second-order linear-r12 Møller–Plesset perturbation theory , 2003 .

[112]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[113]  G. Rauhut,et al.  The vibrational spectra of furoxan and dichlorofuroxan: A comparative theoretical study using density functional theory and local electron correlation methods , 2003 .

[114]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[115]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[116]  Martin Schütz,et al.  A new, fast, semi-direct implementation of linear scaling local coupled cluster theory , 2002 .

[117]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. V. Connected triples beyond (T): Linear scaling local CCSDT-1b , 2002 .

[118]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[119]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[120]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[121]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[122]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[123]  Georg Hetzer,et al.  Low-order scaling local correlation methods II: Splitting the Coulomb operator in linear scaling local second-order Møller–Plesset perturbation theory , 2000 .

[124]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[125]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[126]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[127]  G. Rauhut,et al.  Impact of local approximations on MP2 vibrational frequencies , 1999 .

[128]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[129]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[130]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[131]  Guntram Rauhut,et al.  Local Treatment of Electron Correlation in Molecular Clusters: Structures and Stabilities of (H2O)n, n = 2−4 , 1998 .

[132]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[133]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[134]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[135]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[136]  Peter Pulay,et al.  Comparison of the boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection , 1993, J. Comput. Chem..

[137]  Peter Pulay,et al.  Efficient elimination of basis set superposition errors by the local correlation method: Accurate ab initio studies of the water dimer , 1993 .

[138]  H. Stoll On the correlation energy of graphite , 1992 .

[139]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[140]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[141]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[142]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[143]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[144]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[145]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[146]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[147]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[148]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[149]  CEPA calculations on open-shell molecules. I. Outline of the method , 1981 .

[150]  H. Lischka,et al.  PNO–CI (pair natural orbital configuration interaction) and CEPA–PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH2, BH, BH3, CH4, CH−3, NH3 (planar and pyramidal), H2O, OH+3, HF and the Ne atom , 1975 .

[151]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .

[152]  M. Krauss,et al.  Configuration‐Interaction Calculation of H3 and H2 , 1965 .