Pose and motion recovery from feature correspondences and a digital terrain map

A novel algorithm for pose and motion estimation using corresponding features and a digital terrain map is proposed. Using a digital terrain (or digital elevation) map (DTM/DEM) as a global reference enables the elimination of the ambiguity present in vision-based algorithms for motion recovery. As a consequence, the absolute position and orientation of a camera can be recovered with respect to the external reference frame. In order to do this, the DTM is used to formulate a constraint between corresponding features in two consecutive frames. Explicit reconstruction of the 3D world is not required. When considering a number of feature points, the resulting constraints can be solved using nonlinear optimization in terms of position, orientation, and motion. Such a procedure requires an initial guess of these parameters, which can be obtained from dead-reckoning or any other source. The feasibility of the algorithm is established through extensive experimentation. Performance is compared with a state-of-the-art alternative algorithm, which intermediately reconstructs the 3D structure and then registers it to the DTM. A clear advantage for the novel algorithm is demonstrated in variety of scenarios

[1]  Andrew Zisserman,et al.  Multiple view geometry in computer visiond , 2001 .

[2]  Sang Uk Lee,et al.  Integrated Position Estimation Using Aerial Image Sequences , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Drayton D. Boozer,et al.  Terrain-Aided Navigation Test Results in the AFTI/F-16 Aircraft , 1988 .

[4]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[5]  David J. Kriegman,et al.  Structure and Motion from Line Segments in Multiple Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  John L. Barron,et al.  Recursive estimation of time-varying motion and structure parameters , 1996, Pattern Recognit..

[7]  Michal Irani,et al.  Robust Recovery of Ego-Motion , 1993, CAIP.

[8]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[9]  John Oliensis,et al.  A Critique of Structure-from-Motion Algorithms , 2000, Comput. Vis. Image Underst..

[10]  Allan D. Jepson,et al.  Subspace methods for recovering rigid motion I: Algorithm and implementation , 2004, International Journal of Computer Vision.

[11]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[12]  Takeo Kanade,et al.  Fast and accurate shape-based registration , 1996 .

[13]  Frederick Mosteller,et al.  Understanding robust and exploratory data analysis , 1983 .

[14]  Ehud Rivlin,et al.  A Geometric Interpretation of Weak-Perspective Motion , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Darius Burschka,et al.  V-GPS(SLAM): vision-based inertial system for mobile robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[16]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[17]  P. Anandan,et al.  Direct recovery of shape from multiple views: a parallax based approach , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[18]  Ehud Rivlin,et al.  Error analysis for a navigation algorithm based on optical-flow and a digital terrain map , 2004, CVPR 2004.

[19]  Larry S. Davis,et al.  Model-based object pose in 25 lines of code , 1992, International Journal of Computer Vision.

[20]  Yacov Hel-Or,et al.  Absolute orientation from uncertain point data: a unified approach , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Tieniu Tan,et al.  3D structure and motion estimation from 2D image sequences , 1993, Image Vis. Comput..

[22]  Ronen Basri,et al.  3-D to 2-D Pose Determination with Regions , 1999, International Journal of Computer Vision.

[23]  Steven M. Seitz,et al.  Complete scene structure from four point correspondences , 1995, Proceedings of IEEE International Conference on Computer Vision.

[24]  Rama Chellappa,et al.  Structure from motion: sparse versus dense correspondence methods , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[25]  Gregory D. Hager,et al.  Fast and Globally Convergent Pose Estimation from Video Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  John Oliensis,et al.  A Multi-Frame Structure-from-Motion Algorithm under Perspective Projection , 1999, International Journal of Computer Vision.

[27]  Jean-Claude Latombe,et al.  Planning the Motions of a Mobile Robot in a Sensory Uncertainty Field , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Tieniu Tan,et al.  3D structure and motion estimation from 2D image sequences , 1993, Image Vis. Comput..

[29]  Stefano Soatto,et al.  Optimal Structure from Motion: Local Ambiguities and Global Estimates , 2004, International Journal of Computer Vision.

[30]  Jake K. Aggarwal,et al.  Matching Aerial Images to 3-D Terrain Maps , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Supun Samarasekera,et al.  Pose estimation, model refinement, and enhanced visualization using video , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[32]  David Nistér,et al.  A Minimal Solution to the Generalised 3-Point Pose Problem , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[33]  Peter F. Sturm,et al.  A Factorization Based Algorithm for Multi-Image Projective Structure and Motion , 1996, ECCV.

[34]  Narendra Ahuja,et al.  Motion and Structure From Two Perspective Views: Algorithms, Error Analysis, and Error Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[36]  Stefano Soatto,et al.  MFM": 3-D motion from 2-D motion causally integrated over time , 2000, ECCV 2000.

[37]  Rakesh Kumar,et al.  Shape Recovery from Multiple Views: A Parallax Based Approach , 1994 .

[38]  Harry Shum,et al.  Efficient bundle adjustment with virtual key frames: a hierarchical approach to multi-frame structure from motion , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[39]  Sridhar Srinivasan,et al.  Extracting Structure from Optical Flow Using the Fast Error Search Technique , 2000, International Journal of Computer Vision.

[40]  Zhengyou Zhang Motion and structure from two perspective views: from essential parameters to Euclidean motion through the fundamental matrix , 1997 .

[41]  Neil Genzlinger A. and Q , 2006 .

[42]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[43]  Rama Chellappa,et al.  Experiments on estimating egomotion and structure parameters using long monocular image sequences , 1995, International Journal of Computer Vision.

[44]  John Oliensis Exact Two-Image Structure from Motion , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Olivier D. Faugeras,et al.  Determination of Camera Location from 2-D to 3-D Line and Point Correspondences , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[47]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[48]  Ehud Rivlin,et al.  Error analysis for a navigation algorithm based on optical-flow and a digital terrain map , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..