QoS Performance Analysis of IEEE 802.15.4 MAC in LR-WPAN with Bursty Error Channels

The IEEE 802.15.4 standard defines physical layer and Medium Access Control (MAC) layer protocols for the Low Rate Wireless Personal Areas Network (LR-WPAN). The analytical models of 802.15.4 MAC have been primarily developed under the assumptions of the ideal channels or uniform error channels which fail to capture the characteristics of bursty and correlated channel errors in the practical wireless network environment. In this paper, we propose an analytical model for 802.15.4 MAC in LR-WPAN in the presence of bursty error channels. This model can be adopted to obtain the Quality-of-Service (QoS) performance metrics in terms of throughput, service time, and total delay. Utilizing the analytical model, we investigate the QoS performance of 802.15.4 MAC under various traffic loads, backoff parameters, numbers of stations, and channel conditions.

[1]  Daniel Minoli,et al.  Wireless Sensor Networks: Technology, Protocols, and Applications , 2007 .

[2]  Bhaskar Krishnamachari,et al.  Enhancement of the IEEE 802.15.4 MAC protocol for scalable data collection in dense sensor networks , 2008, 2008 6th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops.

[3]  Weijia Jia,et al.  Performance Analysis of the TXOP Scheme in IEEE 802.11e WLANs with Bursty Error Channels , 2009, 2009 IEEE Wireless Communications and Networking Conference.

[4]  Myung J. Lee,et al.  A Comprehensive Performance Study of IEEE 802 . 15 . 4 , 2004 .

[5]  Zafer Sahinoglu,et al.  Modified Beacon-Enabled IEEE 802.15.4 MAC for Lower Latency , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[6]  Sumit Roy,et al.  Analysis of the contention access period of IEEE 802.15.4 MAC , 2007, TOSN.

[7]  I. Elhanany,et al.  Queueing analysis of Markov modulated ON/OFF arrivals with geometric service times , 2002, The 22nd Convention on Electrical and Electronics Engineers in Israel, 2002..

[8]  Kee Chaing Chua,et al.  A Capacity Analysis for the IEEE 802.11 MAC Protocol , 2001, Wirel. Networks.

[9]  Ramesh Govindan,et al.  Wireless sensor networks , 2003, Comput. Networks.

[10]  Sylvie Perreau,et al.  New cross-Layer design approach to ad hoc networks under Rayleigh fading , 2005, IEEE Journal on Selected Areas in Communications.

[11]  Geyong Min,et al.  A New Analytical Model for Slotted IEEE 802.15.4 Medium Access Control Protocol in Sensor Networks , 2009, 2009 WRI International Conference on Communications and Mobile Computing.

[12]  Yu Cheng,et al.  A Renewal Theory Based Analytical Model for the Contention Access Period of IEEE 802.15.4 MAC , 2008, IEEE Transactions on Wireless Communications.

[13]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[14]  Pravin Varaiya,et al.  Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer , 2008, IEEE Trans. Wirel. Commun..

[15]  Pravin Varaiya,et al.  WLC10-5: Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer , 2006, IEEE Globecom 2006.

[16]  Xuemin Shen,et al.  A Two-Phase Loss Differentiation Algorithm for Improving TFRC Performance in IEEE 802.11 WLANs , 2007, IEEE Transactions on Wireless Communications.

[17]  Min Young Chung,et al.  MAC throughput limit analysis of slotted CSMA/CA in IEEE 802.15.4 WPAN , 2006, IEEE Commun. Lett..

[18]  Panagiotis Papadimitratos,et al.  WSN11-4: A Cross Layer Design of IEEE 802.15.4 MAC Protocol , 2006, IEEE Globecom 2006.

[19]  Wook Hyun Kwon,et al.  Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA , 2005 .