A neuro-observer-based optimal control for nonaffine nonlinear systems with control input saturations

In this study, an adaptive neuro-observer-based optimal control (ANOPC) policy is introduced for unknown nonaffine nonlinear systems with control input constraints. Hamilton–Jacobi–Bellman (HJB) framework is employed to minimize a non-quadratic cost function corresponding to the constrained control input. ANOPC consists of both analytical and algebraic parts. In the analytical part, first, an observer-based neural network (NN) approximates uncertain system dynamics, and then another NN structure solves the HJB equation. In the algebraic part, the optimal control input that does not exceed the saturation bounds is generated. The weights of two NNs associated with observer and controller are simultaneously updated in an online manner. The ultimately uniformly boundedness (UUB) of all signals of the whole closed-loop system is ensured through Lyapunov’s direct method. Finally, two numerical examples are provided to confirm the effectiveness of the proposed control strategy.

[1]  Heidar Ali Talebi,et al.  A stable neural network-based observer with application to flexible-joint manipulators , 2006, IEEE Transactions on Neural Networks.

[2]  Derong Liu,et al.  Neural-network-based online optimal control for uncertain non-linear continuous-time systems with control constraints , 2013 .

[3]  Yang Xiong,et al.  Adaptive Dynamic Programming with Applications in Optimal Control , 2017 .

[4]  Derong Liu,et al.  Neural-Network-Based Online HJB Solution for Optimal Robust Guaranteed Cost Control of Continuous-Time Uncertain Nonlinear Systems , 2014, IEEE Transactions on Cybernetics.

[5]  Frank L. Lewis,et al.  2009 Special Issue: Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems , 2009 .

[6]  Frank L. Lewis,et al.  Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach , 2005, Autom..

[7]  Derong Liu,et al.  Neural-network-observer-based optimal control for unknown nonlinear systems using adaptive dynamic programming , 2013, Int. J. Control.

[8]  Sarangapani Jagannathan,et al.  Online Optimal Control of Affine Nonlinear Discrete-Time Systems With Unknown Internal Dynamics by Using Time-Based Policy Update , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[9]  Mohammad Bagher Menhaj,et al.  A robust neuro-based adaptive control system design for a surface effect ship with uncertain dynamics and input saturation to cargo transfer at sea , 2018 .

[10]  Heidar Ali Talebi,et al.  Adaptive near-optimal neuro controller for continuous-time nonaffine nonlinear systems with constrained input , 2017, Neural Networks.

[11]  Frank L. Lewis,et al.  Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem , 2010, Autom..

[12]  Frank L. Lewis,et al.  Adaptive optimal control for continuous-time linear systems based on policy iteration , 2009, Autom..

[13]  Frank L. Lewis,et al.  Adaptive Optimal Control of Unknown Constrained-Input Systems Using Policy Iteration and Neural Networks , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[14]  Sarangapani Jagannathan,et al.  Online optimal control of nonlinear discrete-time systems using approximate dynamic programming , 2011 .

[15]  J. Na,et al.  Online adaptive approximate optimal tracking control with simplified dual approximation structure for continuous-time unknown nonlinear systems , 2014, IEEE/CAA Journal of Automatica Sinica.

[16]  Frank L. Lewis,et al.  A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems , 2013, Autom..

[17]  Robert Hecht-Nielsen,et al.  Theory of the backpropagation neural network , 1989, International 1989 Joint Conference on Neural Networks.

[18]  Derong Liu,et al.  Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning , 2014, Neural Networks.

[19]  Haibo He,et al.  Self-learning robust optimal control for continuous-time nonlinear systems with mismatched disturbances , 2018, Neural Networks.

[20]  Yuzhu Huang,et al.  Neural network observer-based optimal control for unknown nonlinear systems with control constraints , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[21]  F. Lewis,et al.  Online solution of nonquadratic two‐player zero‐sum games arising in the H ∞  control of constrained input systems , 2014 .

[22]  Zhong-Ping Jiang,et al.  Adaptive dynamic programming and optimal control of nonlinear nonaffine systems , 2014, Autom..

[23]  Derong Liu,et al.  Online approximate optimal control for affine non-linear systems with unknown internal dynamics using adaptive dynamic programming , 2014 .

[24]  Shin'ichi Tamura,et al.  Capabilities of a four-layered feedforward neural network: four layers versus three , 1997, IEEE Trans. Neural Networks.

[25]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[26]  Derong Liu,et al.  Adaptive optimal control for a class of continuous-time affine nonlinear systems with unknown internal dynamics , 2012, Neural Computing and Applications.