Enhanced ferroelectricity in perovskite oxysulfides

A sulfur element is a promising anion dopant for synthesizing new multifunctional materials and for exploring unusual physical phenomena. However, owing to its volatility, sulfur substitution to oxide materials is challenging, and thus the sulfurization effects on the associated properties have been limitedly studied. Here, a facile method for sulfurization to a perovskite oxide $\mathrm{Pb}(\mathrm{Zr},\mathrm{Ti}){\mathrm{O}}_{3}$ is developed and demonstrated. A thiourea $(\mathrm{C}{\mathrm{H}}_{4}{\mathrm{N}}_{2}\mathrm{S})$ solution is used as a precursor for the sulfurization and its doping-level control. By manipulating the sulfur concentration ($x$), we systematically examine the physical properties of sulfur-doped $\mathrm{Pb}(\mathrm{Zr},\mathrm{Ti}){\mathrm{O}}_{3\ensuremath{-}x}{\mathrm{S}}_{x}$ films. An enhancement in the tetragonality and ferroelectricity by sulfurization is observed with the band-gap reduction, which is consistent with our theoretical predictions. In the sulfurized films, the ferroelectric phonon modes become softened progressively, probably due to the substitution of apical oxygens with sulfur atoms. Our work is of practical interest for designing ferroelectric photovoltaic devices with high performances.

[1]  Youdou Zheng,et al.  Behavior and impact of sulfur incorporation in Zinc Oxysulfide alloy grown by metal organic chemical vapor deposition , 2018 .

[2]  David J. Singh,et al.  Bandgap Control via Structural and Chemical Tuning of Transition Metal Perovskite Chalcogenides , 2017, Advanced materials.

[3]  David F. Watson,et al.  Chalcogenide Perovskites- an Emerging Class of Ionic Semiconductors , 2016, 1610.04882.

[4]  S. M. Lee,et al.  Optical and grain boundary potential characteristics of sulfurized BiFeO3 thin films for photovoltaic applications. , 2016, Dalton transactions.

[5]  S. Won,et al.  Flexible Pb(Zr0.52Ti0.48)O3 Films for a Hybrid Piezoelectric-Pyroelectric Nanogenerator under Harsh Environments. , 2016, ACS applied materials & interfaces.

[6]  Darui Liu,et al.  Improved visible-light photocatalytic activity of NaTaO3 with perovskite-like structure via sulfur anion doping , 2015 .

[7]  Gautam Gupta,et al.  Chemical Vapor Deposition Synthesized Atomically Thin Molybdenum Disulfide with Optoelectronic-Grade Crystalline Quality. , 2015, ACS nano.

[8]  I. Kim,et al.  Sulfur (anion) manipulated highly polar stable ferroelectric perovskite under epitaxial strain , 2014 .

[9]  A. Rappe,et al.  Density functional theory study of hypotheticalPbTiO3-based oxysulfides , 2013, 1311.3176.

[10]  V. Harris,et al.  Enhancement of Photocurrent in Ferroelectric Films Via the Incorporation of Narrow Bandgap Nanoparticles , 2012, Advanced materials.

[11]  C. M. Folkman,et al.  Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects , 2011, 1108.3171.

[12]  T. Sritharan,et al.  Low‐Symmetry Monoclinic Phases and Polarization Rotation Path Mediated by Epitaxial Strain in Multiferroic BiFeO3 Thin Films , 2010, 1011.0893.

[13]  Weidong Luo,et al.  Atomic-scale compensation phenomena at polar interfaces. , 2010, Physical review letters.

[14]  D. Tenne,et al.  Ferroelectricity in ultrathin BaTiO3 films: probing the size effect by ultraviolet Raman spectroscopy. , 2009, Physical review letters.

[15]  Chang-Beom Eom,et al.  Domain Engineering for Enhanced Ferroelectric Properties of Epitaxial (001) BiFeO Thin Films , 2009 .

[16]  Xinhu Tang,et al.  Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response , 2008 .

[17]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[18]  YU Peng,et al.  Domain Control in Multiferroic BiFeO3 through Substrate Vicinality , 2007 .

[19]  Hao Wang,et al.  Analysis of Phase Coexistence in Fe2O3‐Doped 0.2PZN–0.8PZT Ferroelectric Ceramics by Raman Scattering Spectra , 2006 .

[20]  Dragan Damjanovic,et al.  Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals , 2006 .

[21]  Huiqian Luo,et al.  Field-induced polarization rotation in (001)-cut Pb(Mg1/3Nb2/3)0.76Ti0.24O3 , 2004 .

[22]  F. Bai,et al.  X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1∕3Nb2∕3)-0.3PbTiO3 crystal , 2004, cond-mat/0402296.

[23]  U. Gösele,et al.  Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites , 2004, Nature materials.

[24]  K. Domen,et al.  Novel Synthesis and Photocatalytic Activity of Oxysulfide Sm2Ti2S2O5 , 2003 .

[25]  M. Itoh,et al.  Optical properties and electronic structure of yttrium oxysulfide , 2003 .

[26]  V. Schmidt,et al.  Phase transformation via a monoclinic phase in relaxor-based ferroelectric crystal (PbMg1/3Nb2/3O3)1-x(PbTiO3)x , 2003 .

[27]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[28]  G. Shirane,et al.  Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3 , 2002, cond-mat/0203422.

[29]  A. Goldoni,et al.  Adsorption and desorption of SO2 on the TiO2(110)-(11) surface: A photoemission study , 2001 .

[30]  Yarong Wang,et al.  Synthesis of BaZrS3 by short time reaction at lower temperatures , 2001 .

[31]  D. Fu,et al.  Raman Studies of the Effects of Nb Dopant on the Ferroelectric Properties in Lead Titanate Thin Film , 2000 .

[32]  G. Shirane,et al.  Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite : The structure of PbZr0.52Ti0.48O3 , 1999, cond-mat/9910066.

[33]  L. E. Cross,et al.  A monoclinic ferroelectric phase transition in the Pb(Zr1-xTix)O3 solid solution , 1999, cond-mat/9903007.

[34]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  Zhang,et al.  Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. , 1991, Physical review letters.

[37]  Claude Guimon,et al.  XPS study of thin films of titanium oxysulfides , 1991 .

[38]  M. Saeki,et al.  Preparation and crystal structures of some complex sulphides at high pressures , 1988 .

[39]  Freire,et al.  Lattice dynamics of crystals with tetragonal BaTiO3 structure. , 1988, Physical review. B, Condensed matter.

[40]  D. Ijdo,et al.  Sulphides with the GdFeO3 structure , 1980 .

[41]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[42]  G. Burns,et al.  Raman Studies of Underdamped Soft Modes in PbTi O 3 , 1970 .

[43]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[44]  A. Clearfield The synthesis and crystal structures of some alkaline earth titanium and zirconium sulfides , 1963 .

[45]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.