Ionized Mg doping in molecular‐beam epitaxy of GaAs

Using ionized Mg beams accelerated to energies from 130 to 500 eV, Mg doping was studied in molecular‐beam epitaxy of GaAs. The incorporation coefficient of Mg increases by a factor of about 100 when compared with the use of neutral Mg beams. Hole concentrations as high as about 1×1019 cm−3 have been achieved. Photoluminescence measurements suggest that the damage due to Mg‐ion bombardment is negligible when the ion accelerating voltage (Va) ≲130 V. For higher Va , the damage can be removed by postgrowth annealing.

[1]  J. R. Arthur,et al.  Molecular beam epitaxy , 1975 .

[2]  R. Fischer,et al.  Beryllium and silicon doping studies in AlxGa1−xAs and new results on persistent photoconductivity , 1985 .

[3]  J. Harris,et al.  Deep states in GaAs grown by molecular beam epitaxy , 1984 .

[4]  T. Furuya,et al.  Sn Ion Doping during GaAs MBE with Field Ion Gun , 1983 .

[5]  M. Ludowise,et al.  The growth of Magnesium-doped GaAs by the Om-Vpe process , 1983 .

[6]  J. Greene,et al.  Model calculations for accelerated As ion doping of Si during molecular beam epitaxy , 1983 .

[7]  K. N. Bhat,et al.  Ion-cleaning damage in (100) GaAs, and its effect on schottky diodes , 1983 .

[8]  W. Tsang,et al.  Photoluminescence study of acceptors in AlxGa1−xAs , 1982 .

[9]  C. Wood,et al.  Magnesium‐ and calcium‐doping behavior in molecular‐beam epitaxial III‐V compounds , 1982 .

[10]  J. Woodall,et al.  Volatile metal oxide incorporation in layers of GaAs and Ga1−xAlxAs grown by molecular beam epitaxy , 1981 .

[11]  R. Farrow The use of ion beams in molecular beam epitaxy , 1981 .

[12]  G. Carter,et al.  The interaction of low energy ion beams with surfaces , 1981 .

[13]  Y. Yeo,et al.  Comparative studies of Mg implants in GaAs in different annealing environments , 1981 .

[14]  K. Ploog,et al.  The Use of Si and Be Impurities for Novel Periodic Doping Structures in GaAs Grown by Molecular Beam Epitaxy , 1981 .

[15]  Y. Ota Silicon molecular beam epitaxy with simultaneous ion implant doping , 1980 .

[16]  R. Dingle,et al.  Luminescent p‐GaAs grown by zinc ion doped MBE , 1979 .

[17]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[18]  S. Gonda,et al.  Doping and electrical properties of Mg in LPE AlxGa1−xAs , 1979 .

[19]  Kiyoshi Takahashi,et al.  Ionized beam doping in molecular‐beam epitaxy of GaAs and AlxGa1−xAs , 1978 .

[20]  R A Stradling,et al.  An infrared study of the shallow acceptor states in GaAs , 1978 .

[21]  Kiyoshi Takahashi,et al.  Ionized Zn doping of GaAs molecular beam epitaxial films , 1975 .

[22]  P. Hiesinger,et al.  Luminescence and Excitation Spectra of Exciton Emission in GaAs , 1974 .

[23]  A. Cho,et al.  Magnesium‐doped GaAs and Alx Ga1−x As by molecular beam epitaxy , 1972 .

[24]  A. Rockett,et al.  A low‐energy, ultrahigh vacuum, solid‐metal ion source for accelerated‐ion doping during molecular beam epitaxy , 1984 .

[25]  James F. Gibbons,et al.  Projected range statistics: Semiconductors and related materials , 1975 .

[26]  D. Shaw Atomic diffusion in semiconductors , 1973 .