Modeling and control of surface acoustic wave motors

This thesis introduces Rayleigh waves and describes the generation of Rayleigh waves. Furthermore, the principle of operation of a SAW motor is analyzed. The analysis is based on a contact model, which describes the behavior between slider and stator. Due to the contact model, the microscopic and the macroscopic behavior can be studied simul- taneously. This model explains typical SAW motor features and determines the influence of parameters. The influence of the model parameters on the SAW motor behavior is studied in order to find the requirements for an optimal contact between slider and sta- tor. The models are validated. To control the SAW motor a linear time invariant system model of the SAW motor is derived and the disturbance sources of the SAW motor are determined and discussed. For closed-loop control, it is useful to eliminate the exist- ing varying dead-band between input and slider velocity. To this end, different actuation methods are investigated. Furthermore, controllers are designed, implemented and tested. Finally, the motor design is studied to obtain an indication for the applied materials, the geometry, the construction, the actuation and the practical limitations. Moreover, a design trajectory, to find initial design parameters, is proposed.

[1]  Minoru Kurosawa,et al.  NANOMETER RESOLUTION 2-D IN-PLANE SAW MOTOR , 2004 .

[2]  M. Koshiba,et al.  Equivalent networks for SAW interdigital transducers , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[3]  Felix G. P. Peeters,et al.  Development of Controlled Surface Acoustic Wave Planar Actuators , 2003 .

[4]  Peter C. Breedveld,et al.  Modelling of physical systems for the design and control of mechatronic systems , 2003, Annu. Rev. Control..

[5]  A. J. Allnutt Topics in Applied Physics , 1975 .

[6]  Kenji Uchino Piezoelectric ultrasonic motors: overview , 1998 .

[7]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[8]  J. van Amerongen Learning feed forward control of a flexible beam , 1996 .

[9]  Minoru Kurosawa,et al.  Simulation Model of Surface Acoustic Wave Motor Considering Tangential Rigidity , 2004 .

[10]  Kenji Uchino,et al.  Loss Mechanisms in Piezoelectrics , 2020, High-Power Piezoelectrics and Loss Mechanisms.

[11]  Zhao Chun-sheng A New Type Non-contact Ultrasonic Motor With Higher Revolution Speed , 2006 .

[12]  A. F. Adams,et al.  The Survey , 2021, Dyslexia in Higher Education.

[13]  J. Yu,et al.  Miniaturization of surface acoustic waves rotary motor. , 2002, Ultrasonics.

[14]  Toshiro Higuchi,et al.  Evaluation of the driving performance of a surface acoustic wave linear motor , 2000, 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121).

[15]  Toshiro Higuchi,et al.  Miniaturization of surface acoustic wave linear motor , 1998, 1998 IEEE Ultrasonics Symposium. Proceedings (Cat. No. 98CH36102).

[16]  R. Rosenberg,et al.  System Dynamics: Modeling and Simulation of Mechatronic Systems , 2006 .

[17]  S. Ueha,et al.  Ultrasonic motors : theory and applications , 1993 .

[18]  Hendrik Jan Coelingh Design support for motion control systems : a mechatronic approach , 2000 .

[19]  Wubbe Jan Roelf Velthuis,et al.  Learning feed-forward control - theory, design and applications - , 2000 .

[21]  Ching-Kong Chao,et al.  High fill-factor microlens array mold insert fabrication using a thermal reflow process , 2004 .

[22]  J. Barbera,et al.  Contact mechanics , 1999 .

[23]  K. Nakamura,et al.  PIEZOELECTRIC TRANSFORMERS USING LINBO3 SINGLE CRYSTALS , 1998 .

[24]  Toshiro Higuchi,et al.  Surface acoustic wave linear motor using silicon slider , 1998, Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176.

[25]  P. Breedveld,et al.  Parameter Variation of a Surface Acoustic Wave Motor , 2004 .

[26]  M. Koshiba,et al.  Equivalent Networks for , 1994 .

[27]  J. van Amerongen,et al.  Design support for motion control systems , 2000 .

[28]  Dean Karnopp,et al.  Computer simulation of stick-slip friction in mechanical dynamic systems , 1985 .

[29]  Toshiro Higuchi,et al.  Optimum pre-load of surface acoustic wave motor , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[30]  Pieter C. Breedveld,et al.  Development of a Surface Acoustic Wave Planar Motor under Closed Loop Control , 2002 .

[31]  T. Higuchi,et al.  Novel power circulation methods for a surface acoustic wave motor , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[32]  Holly O. Witteman,et al.  Modeling of Impact Dynamics: A Literature Survey , 2000 .

[33]  T. Morita,et al.  Simulation of surface acoustic wave motor with spherical slider , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[34]  Kenji Uchino,et al.  Piezoelectric Actuators and Ultrasonic Motors , 1996 .

[35]  K. H. Härdtl,et al.  Electrical and mechanical losses in ferroelectric ceramics , 1982 .

[36]  G. Kino Acoustic waves : devices, imaging, and analog signal processing , 1987 .

[37]  Richard M. White,et al.  Surface elastic waves , 1970 .

[38]  T. Higuchi,et al.  Optimization of slider contact face geometry for surface acoustic wave motor , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[39]  P. V. Remoortere Physical systems theory in terms of bond graphs : P.C. Breedveld: Vakgroep Besturingsystemen en Computertechniek, THT, Afdeling Electrotechniek, Postbus 217, 7500 AE Enschede, The Netherlands. 1984, 200 pages, ISBN 90-9000599-4 , 1984 .

[40]  Frank Davis MATCHING NETWORK DESIGNS WITH COMPUTER SOLUTIONS , 1993 .

[41]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[42]  S. Senturia Microsystem Design , 2000 .

[43]  Antonio Arnau,et al.  Fundamentals on Piezoelectricity , 2004 .

[44]  Toshiro Higuchi,et al.  An ultrasonic X-Y stage using 10 MHz surface acoustic waves , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[45]  de Bastiaan Johannes Kruif Function approximation for learning control : a key sample based approach , 2004 .

[46]  M. Kurosawa,et al.  Effects of ceramic thin film coating on friction surfaces for surface acoustic wave linear motor , 2003, IEEE Symposium on Ultrasonics, 2003.

[47]  K. Uchino,et al.  Loss mechanisms in piezoelectrics: how to measure different losses separately , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  L.C.G.J.M. Habets,et al.  Book review: Introduction to mathematical systems theory, a behavioral approach , 2000 .

[49]  Colin Campbell,et al.  Surface Acoustic Wave Devices for Mobile and Wireless Communications , 1998 .

[50]  J. van Amerongen,et al.  Actuation methods for a Surface Acoustic Wave Motor , 2005 .

[51]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[52]  Pieter C. Breedveld,et al.  An Alternative Model for Static and Dynamic Friction in Dynamic System Simulation , 2000 .

[53]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[54]  M. Munasinghe,et al.  Surface Wave Scattering at Vertical Discontinuties , 1972 .

[55]  M.K. Kurosawa,et al.  Nanometer stepping drives of surface acoustic wave motor , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[56]  Toshiro Higuchi,et al.  Evaluation of a surface acoustic wave motor output force , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[57]  M. P. Koster,et al.  Constructieprincipes voor het nauwkeurig bewegen en positioneren , 1996 .

[58]  D. Cheng Field and wave electromagnetics , 1983 .