Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation

Abstract We propose a tensor structured preconditioner for the tensor train GMRES algorithm (or TT-GMRES for short) to approximate the solution of the all-at-once formulation of time-dependent fractional partial differential equations discretized in time by linear multistep formulas used in boundary value form and in space by finite volumes. Numerical experiments show that the proposed preconditioner is efficient for very large problems and is competitive, in particular with respect to the AMEn algorithm.

[1]  Daniele Bertaccini,et al.  Solving mixed classical and fractional partial differential equations using short–memory principle and approximate inverses , 2017, Numerical Algorithms.

[2]  Hong Wang,et al.  A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations , 2013, J. Comput. Phys..

[3]  Donato Trigiante,et al.  Boundary value methods: The third way between linear multistep and Runge-Kutta methods , 1998 .

[4]  Michael K. Ng,et al.  Block {ω}-circulant preconditioners¶for the systems of differential equations , 2003 .

[5]  Ivan V. Oseledets,et al.  Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..

[6]  Stefano Serra Capizzano,et al.  Spectral Analysis and Multigrid Methods for Finite Volume Approximations of Space-Fractional Diffusion Equations , 2018, SIAM J. Sci. Comput..

[7]  Eugene E. Tyrtyshnikov,et al.  Tensor-Train Ranks for Matrices and Their Inverses , 2011, Comput. Methods Appl. Math..

[8]  S. Dolgov TT-GMRES: solution to a linear system in the structured tensor format , 2012, 1206.5512.

[9]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[10]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[11]  Daniele Bertaccini,et al.  Limited Memory Block Preconditioners for Fast Solution of Fractional Partial Differential Equations , 2018, J. Sci. Comput..

[12]  B. Khoromskij O(dlog N)-Quantics Approximation of N-d Tensors in High-Dimensional Numerical Modeling , 2011 .

[13]  Martin Stoll,et al.  Low-Rank Solvers for Fractional Differential Equations , 2016 .

[14]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[15]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[16]  Eugene E. Tyrtyshnikov,et al.  Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..

[17]  J. G. Verwer,et al.  Boundary value techniques for initial value problems in ordinary differential equations , 1983 .