Posttranscriptional regulation of gene expression by Piwi proteins and piRNAs.

Piwi proteins and Piwi-interacting RNAs (piRNAs) are essential for gametogenesis, embryogenesis, and stem cell maintenance in animals. Piwi proteins act on transposon RNAs by cleaving the RNAs and by interacting with factors involved in RNA regulation. Additionally, piRNAs generated from transposons and psuedogenes can be used by Piwi proteins to regulate mRNAs at the posttranscriptional level. Here we discuss piRNA biogenesis, recent findings on posttranscriptional regulation of mRNAs by the piRNA pathway, and the potential importance of this posttranscriptional regulation for a variety of biological processes such as gametogenesis, developmental transitions, and sex determination.

[1]  Caifu Chen,et al.  Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. , 2010, Genes & development.

[2]  Julius Brennecke,et al.  Specialized piRNA Pathways Act in Germline and Somatic Tissues of the Drosophila Ovary , 2009, Cell.

[3]  C. Brun,et al.  piRNA-mediated transgenerational inheritance of an acquired trait , 2012, Genome research.

[4]  M. G. Kidwell,et al.  Selection for male recombination in Drosophila melanogaster. , 1976, Genetics.

[5]  Ivan Olovnikov,et al.  Small RNA in the nucleus: the RNA-chromatin ping-pong. , 2012, Current opinion in genetics & development.

[6]  Chin Wee Tan,et al.  The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles , 2013, Development.

[7]  Lucas J. T. Kaaij,et al.  Hen1 is required for oocyte development and piRNA stability in zebrafish , 2010, The EMBO journal.

[8]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[9]  K. Mitsuya,et al.  Role for piRNAs and Noncoding RNA in de Novo DNA Methylation of the Imprinted Mouse Rasgrf1 Locus , 2011, Science.

[10]  T. Kai,et al.  The tudor domain protein Kumo is required to assemble the nuage and to generate germline piRNAs in Drosophila , 2012, The EMBO journal.

[11]  David P. Bartel,et al.  Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals , 2008, Nature.

[12]  A. Pélisson,et al.  Evidence for a piwi-Dependent RNA Silencing of the gypsy Endogenous Retrovirus by the Drosophila melanogaster flamenco Gene , 2004, Genetics.

[13]  T. Rana,et al.  Illuminating the silence: understanding the structure and function of small RNAs , 2007, Nature Reviews Molecular Cell Biology.

[14]  G. Hannon,et al.  The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis , 2012, Nature.

[15]  W. Deng,et al.  miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. , 2002, Developmental cell.

[16]  Paolo Sassone-Corsi,et al.  Chromatin remodelling and epigenetic features of germ cells , 2005, Nature.

[17]  Haifan Lin,et al.  MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis , 2006, Proceedings of the National Academy of Sciences.

[18]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[19]  Z. Weng,et al.  The Drosophila HP1 Homolog Rhino Is Required for Transposon Silencing and piRNA Production by Dual-Strand Clusters , 2009, Cell.

[20]  H. Kazazian,et al.  Retrotransposons Revisited: The Restraint and Rehabilitation of Parasites , 2008, Cell.

[21]  Toshiro K. Ohsumi,et al.  Systematic and single cell analysis of Xenopus Piwi‐interacting RNAs and Xiwi , 2009, The EMBO journal.

[22]  Sumio Sugano,et al.  A single female-specific piRNA is the primary determiner of sex in the silkworm , 2014, Nature.

[23]  Hongyu Zhao,et al.  Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline , 2013, The EMBO journal.

[24]  Veena S Patil,et al.  piRNA pathway and the potential processing site, the nuage, in the Drosophila germline , 2012, Development, growth & differentiation.

[25]  V. Gvozdev,et al.  Peculiarities of piRNA-mediated post-transcriptional silencing of Stellate repeats in testes of Drosophila melanogaster , 2009, Nucleic Acids Research.

[26]  T. Kai,et al.  piRNAs mediate posttranscriptional retroelement silencing and localization to pi-bodies in the Drosophila germline , 2009, The Journal of cell biology.

[27]  Eugene Berezikov,et al.  Zili is required for germ cell differentiation and meiosis in zebrafish , 2008, The EMBO journal.

[28]  R. Sachidanandam,et al.  Tudor domain containing 7 (Tdrd7) is essential for dynamic ribonucleoprotein (RNP) remodeling of chromatoid bodies during spermatogenesis , 2011, Proceedings of the National Academy of Sciences.

[29]  Olivier Voinnet,et al.  Antiviral Immunity Directed by Small RNAs , 2007, Cell.

[30]  Kuniaki Saito,et al.  Structure and function of Zucchini endoribonuclease in piRNA biogenesis , 2012, Nature.

[31]  T. Yasunaga,et al.  GPAT2, a mitochondrial outer membrane protein, in piRNA biogenesis in germline stem cells. , 2013, RNA.

[32]  David R. Kelley,et al.  Transposable elements reveal a stem cell-specific class of long noncoding RNAs , 2012, Genome Biology.

[33]  Yong Li,et al.  Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis , 2015, Cell Research.

[34]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[35]  田中 敬 The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline , 2010 .

[36]  Y. Shinkai,et al.  Functional dynamics of H3K9 methylation during meiotic prophase progression , 2007, The EMBO journal.

[37]  R. Sachidanandam,et al.  The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs , 2014, RNA.

[38]  A. Fujiyama,et al.  MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. , 2011, Developmental cell.

[39]  H. Okano,et al.  Small RNA profiling and characterization of piRNA clusters in the adult testes of the common marmoset, a model primate , 2014, RNA.

[40]  H. Ren,et al.  piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. , 2011, Developmental cell.

[41]  Z. Adelman,et al.  Production of Virus-Derived Ping-Pong-Dependent piRNA-like Small RNAs in the Mosquito Soma , 2012, PLoS pathogens.

[42]  N. Nakatsuji,et al.  Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: Germinal granules in mammals , 2009, Molecular and Cellular Endocrinology.

[43]  Z. Weng,et al.  Heterotypic piRNA Ping-Pong requires qin, a protein with both E3 ligase and Tudor domains. , 2011, Molecular cell.

[44]  Elisa Izaurralde,et al.  Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. , 2005, RNA.

[45]  J. Kawai,et al.  The regulated retrotransposon transcriptome of mammalian cells , 2009, Nature Genetics.

[46]  Dominik Handler,et al.  The Genetic Makeup of the Drosophila piRNA Pathway , 2013, Molecular cell.

[47]  Kuniaki Saito,et al.  A Slicer-Mediated Mechanism for Repeat-Associated siRNA 5' End Formation in Drosophila , 2007, Science.

[48]  Eugene Berezikov,et al.  A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish , 2007, Cell.

[49]  Y. Sakaki,et al.  Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes , 2008, Nature.

[50]  Z. Weng,et al.  The HP1 Homolog Rhino Anchors a Nuclear Complex that Suppresses piRNA Precursor Splicing , 2014, Cell.

[51]  Kuniaki Saito,et al.  Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. , 2010, Genes & development.

[52]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[53]  G. Hannon,et al.  A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. , 2013, Molecular cell.

[54]  A. Aravin,et al.  To be or not to be a piRNA: genomic origin and processing of piRNAs , 2014, Genome Biology.

[55]  A. Bortvin PIWI-interacting RNAs (piRNAs) — a mouse testis perspective , 2013, Biochemistry (Moscow).

[56]  Robert A. Martienssen,et al.  RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond , 2013, Nature Reviews Genetics.

[57]  Weifeng Gu,et al.  C. elegans piRNAs Mediate the Genome-wide Surveillance of Germline Transcripts , 2012, Cell.

[58]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[59]  S. Kawaoka,et al.  3' end formation of PIWI-interacting RNAs in vitro. , 2011, Molecular cell.

[60]  R. Reenan,et al.  PIWI proteins and PIWI-interacting RNAs function in Hydra somatic stem cells , 2013, Proceedings of the National Academy of Sciences.

[61]  T. Mikkelsen,et al.  Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. , 2013, Cell reports.

[62]  Haifan Lin,et al.  PAPI, a novel TUDOR-domain protein, complexes with AGO3, ME31B and TRAL in the nuage to silence transposition , 2011, Development.

[63]  G. Hannon,et al.  Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice , 2009, PLoS genetics.

[64]  Haifan Lin,et al.  Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism. , 2013, Current opinion in cell biology.

[65]  Zhiping Weng,et al.  Adaptation to P Element Transposon Invasion in Drosophila melanogaster , 2011, Cell.

[66]  P. Gunaratne,et al.  GASZ Is Essential for Male Meiosis and Suppression of Retrotransposon Expression in the Male Germline , 2009, PLoS genetics.

[67]  Z. Weng,et al.  Collapse of Germline piRNAs in the Absence of Argonaute3 Reveals Somatic piRNAs in Flies , 2009, Cell.

[68]  M. Griswold,et al.  Mice Deficient for a Small Cluster of Piwi-Interacting RNAs Implicate Piwi-Interacting RNAs in Transposon Control1 , 2008, Biology of reproduction.

[69]  Toshiaki Watanabe,et al.  Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. , 2006, Genes & development.

[70]  Martin J. Simard,et al.  Function, Targets, and Evolution of Caenorhabditis elegans piRNAs , 2012, Science.

[71]  K. Livak Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis. , 1984, Genetics.

[72]  R. Sachidanandam,et al.  An Epigenetic Role for Maternally Inherited piRNAs in Transposon Silencing , 2008, Science.

[73]  S. Sugano,et al.  Hsp90 facilitates accurate loading of precursor piRNAs into PIWI proteins , 2013, RNA.

[74]  Anthony Boureux,et al.  Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo , 2010, Nature.

[75]  R. Sachidanandam,et al.  A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. , 2012, Molecular cell.

[76]  Xian Chen,et al.  Jmjd1a Demethylase-regulated Histone Modification Is Essential for cAMP-response Element Modulator-regulated Gene Expression and Spermatogenesis* , 2009, The Journal of Biological Chemistry.

[77]  Haifan Lin,et al.  PIWI proteins and PIWI-interacting RNAs in the soma , 2014, Nature.

[78]  T. Mituyama,et al.  Biogenesis pathways of piRNAs loaded onto AGO3 in the Drosophila testis. , 2010, RNA.

[79]  Labib Rouhana,et al.  PIWI homologs mediate Histone H4 mRNA localization to planarian chromatoid bodies , 2014, Development.

[80]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[81]  Kuniaki Saito,et al.  Pimet, the Drosophila homolog of HEN1, mediates 2'-O-methylation of Piwi- interacting RNAs at their 3' ends. , 2007, Genes & development.

[82]  Fabio Mohn,et al.  The Rhino-Deadlock-Cutoff Complex Licenses Noncanonical Transcription of Dual-Strand piRNA Clusters in Drosophila , 2014, Cell.

[83]  J. Toppari,et al.  An atlas of chromatoid body components , 2014, RNA.

[84]  Peng Wang,et al.  The Drosophila RNA Methyltransferase, DmHen1, Modifies Germline piRNAs and Single-Stranded siRNAs in RISC , 2007, Current Biology.

[85]  I. Olovnikov,et al.  Euchromatic Transposon Insertions Trigger Production of Novel Pi- and Endo-siRNAs at the Target Sites in the Drosophila Germline , 2014, PLoS genetics.

[86]  Anton J. Enright,et al.  The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements , 2011, Nature.

[87]  Kuniaki Saito,et al.  Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. , 2006, Genes & development.

[88]  Adam P. Rosebrock,et al.  Minotaur is critical for primary piRNA biogenesis , 2013, RNA.

[89]  Ravi Sachidanandam,et al.  Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing , 2011, Nature.

[90]  René F. Ketting,et al.  PIWI-interacting RNAs: from generation to transgenerational epigenetics , 2013, Nature Reviews Genetics.

[91]  A. Stark,et al.  The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. , 2009, Developmental cell.

[92]  Maike A. Laussmann,et al.  RNA Clamping by Vasa Assembles a piRNA Amplifier Complex on Transposon Transcripts , 2014, Cell.

[93]  T. Nakano,et al.  MILI, a PIWI-interacting RNA-binding Protein, Is Required for Germ Line Stem Cell Self-renewal and Appears to Positively Regulate Translation* , 2009, Journal of Biological Chemistry.

[94]  Vladimir Gvozdev,et al.  A Distinct Small RNA Pathway Silences Selfish Genetic Elements in the Germline , 2006, Science.

[95]  Zissimos Mourelatos,et al.  The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. , 2007, RNA.

[96]  C. Mello,et al.  CapSeq and CIP-TAP Identify Pol II Start Sites and Reveal Capped Small RNAs as C. elegans piRNA Precursors , 2012, Cell.

[97]  Celina E. Juliano,et al.  Untangling the web: The diverse functions of the PIWI/piRNA pathway , 2013, Molecular reproduction and development.

[98]  Y. Matsui,et al.  Epigenetic events in mammalian germ-cell development: reprogramming and beyond , 2008, Nature Reviews Genetics.

[99]  Satoru Kobayashi,et al.  Analysis of Hydra PIWI proteins and piRNAs uncover early evolutionary origins of the piRNA pathway. , 2014, Developmental biology.

[100]  Haifan Lin,et al.  Pinpointing the expression of piRNAs and function of the PIWI protein subfamily during spermatogenesis in the mouse. , 2011, Developmental biology.