Optimising Matrix Product State Simulations of Shor's Algorithm

We detail techniques to optimise high-level classical simulations of Shor's quantum factoring algorithm. Chief among these is to examine the entangling properties of the circuit and to effectively map it across the one-dimensional structure of a matrix product state. Compared to previous approaches whose space requirements depend on $r$, the solution to the underlying order-finding problem of Shor's algorithm, our approach depends on its factors. We performed a matrix product state simulation of a 60-qubit instance of Shor's algorithm that would otherwise be infeasible to complete without an optimised entanglement mapping.

[1]  Richard L. Graham,et al.  Open MPI: A Flexible High Performance MPI , 2005, PPAM.

[2]  Eric Rescorla,et al.  The Transport Layer Security (TLS) Protocol Version 1.3 , 2018, RFC.

[3]  R Jessup,et al.  A Parallel Algorithm for Computing the Singular Value Decomposition of a Matrix:A Revision of Argonne National Laboratory Tech. Report ANL/MCS-TM-102 ; CU-CS-623-92 , 1994 .

[4]  John A. Gunnels,et al.  Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral , 2017 .

[5]  Tim Dierks,et al.  The Transport Layer Security (TLS) Protocol Version 1.2 , 2008 .

[6]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[7]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[8]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[9]  Wojciech Szpankowski,et al.  Yet another application of a binomial recurrence order statistics , 1990, Computing.

[10]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[11]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[12]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[13]  J. Latorre,et al.  Universality of entanglement and quantum-computation complexity , 2003, quant-ph/0311017.

[14]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[15]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[16]  Qian Wang,et al.  AUGEM: Automatically generate high performance Dense Linear Algebra kernels on x86 CPUs , 2013, 2013 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[17]  SzpankowskiWojciech,et al.  Yet another application of a binomial recurrence. Order statistics , 1990 .

[18]  Robert A. van de Geijn,et al.  Elemental: A New Framework for Distributed Memory Dense Matrix Computations , 2013, TOMS.

[19]  Daniel J. Bernstein,et al.  Introduction to post-quantum cryptography , 2009 .

[20]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  B. Lanyon,et al.  Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. , 2007, Physical review letters.

[23]  Jian-Wei Pan,et al.  Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. , 2007, Physical review letters.

[24]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[25]  Andrew G. Glen,et al.  APPL , 2001 .

[26]  Eric Rescorla,et al.  The Transport Layer Security (TLS) Protocol Version 1.2 , 2008, RFC.

[27]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  E. Lucero,et al.  Computing prime factors with a Josephson phase qubit quantum processor , 2012, Nature Physics.

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  Lloyd Christopher L. Hollenberg,et al.  Simulations of Shor’s algorithm using matrix product states , 2015, Quantum Inf. Process..

[31]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[32]  Eugene Dumitrescu,et al.  Tree tensor network approach to simulating Shor's algorithm , 2017, 1705.01140.

[33]  Sean Turner,et al.  Transport Layer Security , 2014, IEEE Internet Computing.