First report of long term measurements of the MGGL laboratory in the Mátra mountain range

Matra Gravitational and Geophysical Laboratory (MGGL) has been established near Gy\"ongy\"osoroszi, Hungary in 2015, in the cavern system of an unused ore mine. The Laboratory is located at 88~m below the surface, with the aim to measure and analyse the advantages of the underground installation of third generation gravitational wave detectors. Specialized instruments have been installed to measure seismic, infrasound, electromagnetic noise, and the variation of the cosmic muon flux. In the preliminary (RUN-0) test period, March-August 2016, data collection has been accomplished. In this paper we describe the research potential of the MGGL, list the installed equipments and summarize the experimental results of RUN-0. A novel theoretical framework of noise damping in rock masses is also introduced. Here we report RUN-0 data, that prepares systematic and synchronized data collection of the next run period.

[1]  J. Peterson,et al.  Observations and modeling of seismic background noise , 1993 .

[2]  Mark G. Beker Low-frequency sensitivity of next generation gravitational wave detectors , 2013 .

[3]  Leon Bieber The Mechanics Of Earthquakes And Faulting , 2016 .

[4]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[5]  The Ligo Scientific Collaboration,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.

[6]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[7]  David Blair,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, Classical and quantum gravity.

[8]  Gerardo Giordano,et al.  Microseismic studies of an underground site for a new interferometric gravitational wave detector , 2014 .

[9]  Maurice A. Biot,et al.  Theory of Stress‐Strain Relations in Anisotropic Viscoelasticity and Relaxation Phenomena , 1954 .

[10]  L. Oláh,et al.  Portable cosmic muon telescope for environmental applications , 2012 .

[11]  K. Matsuki Anelastic strain recovery compliance of rocks and its application to in situ stress measurement , 2008 .

[12]  P. Ván Thermodynamics of continua: the challenge of universality , 2013, 1305.3582.

[13]  L. Oláh,et al.  CCC-based muon telescope for examination of natural caves , 2012 .

[14]  G. Kluitenberg Thermodynamical theory of elasticity and plasticity , 1962 .

[15]  G. Földvary Geology Of The Carpathian Region , 1988 .

[16]  József Verhás,et al.  Thermodynamics and Rheology , 1997 .

[17]  K. Matsuki,et al.  Three-dimensional in situ stress determination by anelastic strain recovery of a rock core , 1993 .

[18]  The LIGO Scientific Collaboration,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, 1602.03844.

[19]  P. V'an,et al.  Universal heat conduction -- the thermodynamics of some weakly nonlocal theories , 2011, 1108.5589.

[20]  Lianyang Zhang,et al.  Engineering properties of rocks , 2005 .

[21]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[22]  G. Hamar,et al.  Asymmetric Multi-Wire Proportional Chamber with reduced requirements to mechanical precision , 2011 .

[23]  Geotechnical Design of an Underground Mine Dam in Gyöngyösoroszi, Hungary , 2015 .

[24]  L. Oláh,et al.  Cosmic Background Measurements at a Proposed Underground Laboratory by the REGARD Muontomograph , 2016 .

[25]  P. Ván,et al.  Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory , 2014, 1407.0882.

[26]  Publisher's Note: Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy [Phys. Rev. D 93, 112004 (2016)] , 2018 .

[27]  T. Creighton Tumbleweeds and airborne gravitational noise sources for LIGO , 2000, gr-qc/0007050.

[28]  R. Schofield,et al.  Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.

[29]  G. Hamar,et al.  Cosmic Muon Detection for Geophysical Applications , 2013 .

[30]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[31]  G. Hamar,et al.  Close cathode chamber: Low material budget MWPC , 2013 .

[32]  L. Oláh,et al.  Close Cathode Chamber technology for cosmic particle tracking , 2015 .

[33]  R. Adhikari,et al.  Subtraction of Newtonian noise using optimized sensor arrays , 2012, 1207.0275.

[34]  Francesco Marin,et al.  Einstein gravitational wave Telescope conceptual design study , 2011 .

[35]  D. L. Anderson Theory of Earth , 2014 .

[36]  M. G. Beker,et al.  Subterranean ground motion studies for the Einstein Telescope , 2015 .

[37]  K. Aki,et al.  Quantitative Seismology, 2nd Ed. , 2002 .