Small molecular weight organic thin-film photodetectors and solar cells

In this review, we discuss the physics underlying the operation of single and multiple heterojunction, vacuum-deposited organic solar cells based on small molecular weight thin films. For single heterojunction cells, we find that the need for direct contact between the deposited electrode and the active organics leads to quenching of excitons. An improved device architecture, the double heterojunction, is shown to confine excitons within the active layers, allowing substantially higher internal efficiencies to be achieved. A full optical and electrical analysis of the double heterostructure architecture leads to optimal cell design as a function of the optical properties and exciton diffusion lengths of the photoactive materials. Combining the double heterostructure with novel light trapping schemes, devices with external efficiencies approaching their internal efficiency are obtained. When applied to an organic photovoltaic cell with a power conversion efficiency of 1.0%±0.1% under 1 sun AM1.5 illuminati...

[1]  Stephen R. Forrest,et al.  Improved energy transfer in electrophosphorescent devices , 1999 .

[2]  M. Yokoyama,et al.  Doping Effect on the Two-layer Organic Solar Cell , 1990 .

[3]  D. Meissner,et al.  Junction effects in phthalocyanine thin film solar cells , 1991 .

[4]  A. Sussman Electrical Properties of Copper Phthalocyanine Thin Films as Influenced by the Ambient , 1967 .

[5]  Stephen R. Forrest,et al.  Study of localized and extended excitons in 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) II. Photocurrent response at low electric fields , 1996 .

[6]  Stephen R. Forrest,et al.  Efficient, high-bandwidth organic multilayer photodetectors , 2000 .

[7]  Jean-Pierre Moy,et al.  Large area X-ray detectors based on amorphous silicon technology , 1999 .

[8]  Stephen R. Forrest,et al.  Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition , 2001 .

[9]  Robert L. Whetten,et al.  Photophysical properties of C60 , 1991 .

[10]  J. Hummelen,et al.  Design and synthesis of new processible donor-acceptor dyad and triads , 2001 .

[11]  Y. Ouchi,et al.  Electronic Structures and Chemical Bonding of Fluorinated Fullerenes Studied by NEXAFS, UPS, and Vacuum-UV Absorption Spectroscopies , 1998 .

[12]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[13]  G. Lanzani,et al.  Full temporal resolution of the two-step photoinduced energy–electron transfer in a fullerene–oligothiophene–fullerene triad using sub-10 fs pump–probe spectroscopy , 2001 .

[14]  L. S. Roman,et al.  Modeling photocurrent action spectra of photovoltaic devices based on organic thin films , 1999 .

[15]  H. Bässler,et al.  INTRINSIC PHOTOCONDUCTION IN PPV-TYPE CONJUGATED POLYMERS , 1997 .

[16]  Stephen R. Forrest,et al.  High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters , 2002 .

[17]  Masahiro Hiramoto,et al.  Organic solar cell based on multistep charge separation system , 1992 .

[18]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[19]  Richard H. Friend,et al.  Measurements of optical electric field intensities in microcavities using thin emissive polymer films , 1997 .

[20]  C. A. Walsh,et al.  Efficient photodiodes from interpenetrating polymer networks , 1995, Nature.

[21]  Stephen R. Forrest,et al.  Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes , 2000 .

[22]  John G. Simmons,et al.  Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems , 1967 .

[23]  Alan J. Heeger,et al.  DUAL-FUNCTION SEMICONDUCTING POLYMER DEVICES : LIGHT-EMITTING AND PHOTODETECTING DIODES , 1994 .

[24]  Wolfgang Brütting,et al.  Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells , 2001 .

[25]  Forrest,et al.  Evidence for exciton confinement in crystalline organic multiple quantum wells. , 1991, Physical review letters.

[26]  Alan Sussman,et al.  Space‐Charge‐Limited Currents in Copper Phthalocyanine Thin Films , 1967 .

[27]  A. Heeger,et al.  High Sensitivity Polymer Photosensors for Image Sensing Applications , 1999 .

[28]  D. Schlettwein,et al.  Investigations of n/p-junction photovoltaic cells of perylenetetracarboxylic acid diimides and phthalocyanines , 1995 .

[29]  S. Forrest,et al.  Optical and electrical properties of isotype crystalline molecular organic heterojunctions , 1989 .

[30]  Antoine Kahn,et al.  Charge-separation energy in films of π-conjugated organic molecules , 2000 .

[31]  Roland Winston,et al.  Principles of cylindrical concentrators for solar energy , 1975 .

[32]  Amal K. Ghosh,et al.  Merocyanine organic solar cells , 1978 .

[33]  Mats Andersson,et al.  Photoluminescence quenching at a polythiophene/C-60 heterojunction , 2000 .

[34]  Antoine Kahn,et al.  Molecular level alignment at organic semiconductor-metal interfaces , 1998 .

[35]  K. Maruyama,et al.  CYCLOADDITION REACTION OF CYCLOBUTENE WITH AROYLAZIRIDINES —DIPOLE-DIPOLE INTERACTION MECHANISM IN 1,3-DIPOLAR CYCLOADDITION , 1974 .

[36]  O. S. Heavens,et al.  Optical Properties of Thin Solid Films , 2011 .

[37]  Amal K. Ghosh,et al.  High‐efficiency organic solar cells , 1978 .

[38]  B. Gregg,et al.  Long-Range Singlet Energy Transfer in Perylene Bis(phenethylimide) Films , 1997 .

[39]  Shui-Tong Lee,et al.  Transient electroluminescence of organic quantum-well light-emitting diodes , 2002 .

[40]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[41]  Vladimir M. Shalaev,et al.  EXPERIMENTAL OBSERVATION OF LOCALIZED OPTICAL EXCITATIONS IN RANDOM METAL-DIELECTRIC FILMS , 1999 .

[42]  Antoine Kahn,et al.  Organic semiconductor heterointerfaces containing bathocuproine , 1999 .

[43]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[44]  Transparent stacked organic light emitting devices. I. Design principles and transparent compound electrodes , 1999 .

[45]  R. C. Enck,et al.  Onsager mechanism of photogeneration in amorphous selenium , 1975 .

[46]  C. Bindhu,et al.  Optical limiting and thermal lensing studies in C60 , 1999 .

[47]  M. I. Khan,et al.  Study of Carrier Generation in Titanyl Phthalocyanine (TiOPc) by Electric-Field-Induced Quenching of Integrated and Time-Resolved Fluorescence , 1998 .

[48]  G. Lorusso,et al.  Optical spectra and photoluminescence of C60 thin films , 1996 .

[49]  Martin Knupfer,et al.  Band-gap and correlation effects in the organic semiconductor Alq 3 , 2001 .

[50]  Stephen R. Forrest,et al.  A surface-emitting vacuum-deposited organic light emitting device , 1997 .

[51]  Stephen R. Forrest,et al.  Interface-limited injection in amorphous organic semiconductors , 2001 .

[52]  D. Shen,et al.  Amorphous silicon photodetector for optical interconnections , 2000 .

[53]  J. R. Yeargan,et al.  The Poole-Frenkel effect with compensation present. , 1968 .

[54]  Kurz,et al.  Ultrafast field-induced dissociation of excitons in conjugated polymers. , 1994, Physical review letters.

[55]  Paul Seidler,et al.  Direct Determination of the Exciton Binding Energy of Conjugated Polymers Using a Scanning Tunneling Microscope , 1998 .

[56]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[57]  Stephen R. Forrest,et al.  Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays , 2002 .

[58]  A. Kahn,et al.  Metal-dependent charge transfer and chemical interaction at interfaces between 3,4,9,10-perylenetetracarboxylic bisimidazole and gold, silver and magnesium , 2000 .

[59]  Robert Mertens,et al.  Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions , 2002 .

[60]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[61]  Mm Martijn Wienk,et al.  Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells , 2002 .

[62]  Mark A. Ratner,et al.  Exciton Migration and Cathode Quenching in Organic Light Emitting Diodes , 2000 .

[63]  Kahn,et al.  Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. , 1996, Physical review. B, Condensed matter.

[64]  E. A. Silinsh,et al.  Organic Molecular Crystals , 1980 .

[65]  Masahiro Hiramoto,et al.  Effect of Thin Gold Interstitial-layer on the Photovoltaic Properties of Tandem Organic Solar Cell , 1990 .

[66]  Stephen R. Forrest,et al.  Transparent stacked organic light emitting devices. II. Device performance and applications to displays , 1999 .

[67]  H. Bässler,et al.  Electric field-induced photoluminescence quenching in thin-film light-emitting diodes based on poly(phenyl-p-phenylene vinylene) , 1995 .

[68]  C. Westgate,et al.  Bulk Trapping States in β‐Phthalocyanine Single Crystals , 1970 .

[69]  C. Brabec,et al.  Ultrafast charge transfer in conjugated polymer-fullerene composites , 2001 .

[70]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[71]  M. Knupfer,et al.  Localized and delocalized singlet excitons in ladder-type poly(paraphenylene) , 1998 .

[72]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[73]  A. Michel,et al.  Directional effects of heavy-ion irradiation in Tb/Fe multilayers , 2000 .

[74]  Kazuhiko Seki,et al.  Energy-level alignment at model interfaces of organic electroluminescent devices studied by UV photoemission: trend in the deviation from the traditional way of estimating the interfacial electronic structures , 1998 .

[75]  R. Friend,et al.  Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer , 1999 .

[76]  W. Stampor,et al.  Electric field effect on luminescence efficiency in 8-hydroxyquinoline aluminum (Alq3) thin films , 1997 .

[77]  Dieter Meissner,et al.  The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment , 2000 .

[78]  T. K. Woodward,et al.  1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies , 1999 .

[79]  Yongli Gao,et al.  Photoluminescence quenching of Alq3 by metal deposition: A surface analytical investigation , 1998 .

[80]  Stephen R. Forrest,et al.  A metal-free cathode for organic semiconductor devices , 1998 .

[81]  Richard H. Friend,et al.  CHARGE- AND ENERGY-TRANSFER PROCESSES AT POLYMER/POLYMER INTERFACES : A JOINT EXPERIMENTAL AND THEORETICAL STUDY , 1999 .

[82]  J. Frenkel,et al.  On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors , 1938 .

[83]  Stephen R. Forrest,et al.  Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices , 1996 .

[84]  Mats Andersson,et al.  University of Groningen Polymer photovoltaic devices from stratified multilayers of donor-acceptor blends , 2022 .