VersaPen: An Adaptable, Modular and Multimodal I/O Pen

While software often allows user customization, most physical devices remain mainly static. We introduce VersaPen, an adaptable, multimodal, hot-pluggable pen for expanding input capabilities. Users can create their own pens by stacking different input/output modules that define both the look and feel of the customized device. VersaPen offers multiple advantages. Allowing in-place interaction, it reduces hand movements and avoids cluttering the interface with menus and palettes. It also enriches interaction by providing multimodal capabilities, as well as a mean to encapsulate virtual data into physical modules which can be shared by users to foster collaboration. We present various applications to demonstrate how VersaPen enables new interaction techniques.

[1]  W. Keith Edwards,et al.  Systematic output modification in a 2D user interface toolkit , 1997, UIST '97.

[2]  Hiroshi Ishii,et al.  mediaBlocks: physical containers, transports, and controls for online media , 1998, SIGGRAPH.

[3]  Daniel J. Wigdor,et al.  Combining and measuring the benefits of bimanual pen and direct-touch interaction on horizontal interfaces , 2008, AVI '08.

[4]  Darren Leigh,et al.  The calder toolkit: wired and wireless components for rapidly prototyping interactive devices , 2004, DIS '04.

[5]  Ravin Balakrishnan,et al.  Pressure widgets , 2004, CHI.

[6]  Yang Li,et al.  Experimental analysis of mode switching techniques in pen-based user interfaces , 2005, CHI.

[7]  Bertrand Schneider,et al.  Benefits of a Tangible Interface for Collaborative Learning and Interaction , 2011, IEEE Transactions on Learning Technologies.

[8]  François Guimbretière,et al.  FlexAura: a flexible near-surface range sensor , 2012, UIST '12.

[9]  Scott R. Klemmer,et al.  d . tools : Visually Prototyping Physical UIs through Statecharts , 2005 .

[10]  Michael S. Bernstein,et al.  Visually Prototyping Physical UIs through Statecharts , 2005 .

[11]  Jiro Tanaka,et al.  Stylus Enhancement to Enrich Interaction with Computers , 2007, HCI.

[12]  Hongan Wang,et al.  The tilt cursor: enhancing stimulus-response compatibility by providing 3d orientation cue of pen , 2007, CHI.

[13]  Sungjae Hwang,et al.  MagGetz: customizable passive tangible controllers on and around conventional mobile devices , 2013, UIST.

[14]  Tovi Grossman,et al.  PenLight: combining a mobile projector and a digital pen for dynamic visual overlay , 2009, CHI.

[15]  Xiang Cao,et al.  Grips and gestures on a multi-touch pen , 2011, CHI.

[16]  Olga Sorkine-Hornung,et al.  Tangible and modular input device for character articulation , 2014, SIGGRAPH Studio.

[17]  Darren Leigh,et al.  Haptic pen: a tactile feedback stylus for touch screens , 2004, UIST '04.

[18]  Desney S. Tan,et al.  WinCuts: manipulating arbitrary window regions for more effective use of screen space , 2004, CHI EA '04.

[19]  William Buxton,et al.  Issues in combining marking and direct manipulation techniques , 1991, UIST '91.

[20]  Patrick Baudisch,et al.  Hover widgets: using the tracking state to extend the capabilities of pen-operated devices , 2006, CHI.

[21]  Chunyuan Liao,et al.  Pen-top feedback for paper-based interfaces , 2006, UIST.

[22]  Olivier Chapuis,et al.  User interface façades: towards fully adaptable user interfaces , 2006, UIST.

[23]  A. Landi Human Hand Function , 2007 .

[24]  Saul Greenberg,et al.  Phidgets: easy development of physical interfaces through physical widgets , 2001, UIST '01.

[25]  Hans-Werner Gellersen,et al.  A malleable control structure for softwired user interfaces , 2007, Tangible and Embedded Interaction.

[26]  Fabrice Matulic,et al.  Sensing techniques for tablet+stylus interaction , 2014, UIST.

[27]  Pierre Dragicevic,et al.  The Input Configurator toolkit: towards high input adaptability in interactive applications , 2004, AVI.