State dependent particle dynamics in liquid alkali metals

This paper gives a survey of the particle dynamics in the liquid alkali metals observed with inelastic x-ray and neutron scattering experiments. Liquid rubidium and sodium are chosen as model fluids to represent the behaviour of this group of fluids. In the dense metallic monatomic melt the microscopic dynamics is characterized by collective excitations similar to those in the corresponding solids. The collective particle behaviour is appropriately described using a memory function formalism with two relaxation channels for the density correlation. A similar behaviour is found for the single particle motion where again two relaxation mechanisms are needed to accurately reproduce the experimental findings. Special emphasis is given to the density dependence of the particle dynamics. An interesting issue in liquid metals is the metal to non-metal transition, which is observed if the fluid is sufficiently expanded with increasing temperature and pressure. This causes distinct variations in the interparticle interactions, which feed back onto the motional behaviour. The associated variations in structure and dynamics are reflected in the shape of the scattering laws. The experimentally observed features are discussed and compared with simple models and with the results from computer simulations.

[1]  P. D. Randolph Slow Neutron Inelastic Scattering from Liquid Sodium , 1964 .

[2]  Eberhard Burkel,et al.  Inelastic Scattering of X-Rays with Very High Energy Resolution , 1991 .

[3]  The Insulator-Metal Transition in Expanded Cesium , 1994 .

[4]  M. Ernst,et al.  Nonanalytic dispersion relations for classical fluids , 1975 .

[5]  Leo P. Kadanoff,et al.  Hydrodynamic equations and correlation functions , 1963 .

[6]  Density fluctuations in classical monatomic liquids , 1971 .

[7]  J. Petravic,et al.  Shear viscosity of molten sodium chloride , 2003 .

[8]  R. S. Allgaier,et al.  Introduction to the Theory of Liquid Metals , 1972 .

[9]  P. D. Randolph Slow neutron scattering evidence for violating of the f-sum rule in liquid sodium , 1963 .

[10]  C. Morkel,et al.  Single-particle motion in liquid sodium. , 1986 .

[11]  U. Dahlborg,et al.  Atomic motions in liquid sodium , 1985 .

[12]  G. Ruocco,et al.  A perfect crystal X-ray analyser with meV energy resolution , 1996 .

[13]  E. U. Franck,et al.  Empirical Regularities in the Behaviour of the Critical Constants of Fluid Alkali Metals , 2000 .

[14]  G. Kahl,et al.  A molecular-dynamics study of the dynamic properties of liquid rubidium. I. Collective correlation functions , 1994 .

[15]  M. Canales,et al.  Dynamic properties of Lennard-Jones fluids and liquid metals. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  P. A. Egelstaff,et al.  Temperature and pressure dependence of the atomic dynamics of liquid rubidium , 1999 .

[17]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[18]  K. Hoshino,et al.  Temperature Dependence of the Dynamical Structure of Expanded Liquid Rubidium , 1992 .

[19]  L. Verlet,et al.  Computer "Experiments" on Classical Fluids. IV. Transport Properties and Time-Correlation Functions of the Lennard-Jones Liquid near Its Triple Point , 1973 .

[20]  Suck,et al.  Onset of depature from linearized hydrodynamic behavior in argon gas studied with neutron Brillouin scattering. , 1990, Physical review letters.

[21]  F. Hensel,et al.  Structure of Expanded Fluid Metals , 1989 .

[22]  Bergmann,et al.  Collective dynamics in water by high energy resolution inelastic X-ray scattering. , 1995, Physical review letters.

[23]  Tao,et al.  Testing mode-coupling predictions for alpha and beta relaxation in Ca0.4K0.6(NO3)1.4 near the liquid-glass transition by light scattering. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[24]  J. Copley,et al.  The dynamic properties of monatomic liquids , 1975 .

[25]  G. Ruocco,et al.  Inelastic x-ray scattering study of the collective dynamics in liquid sodium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  W. H. Young,et al.  A new simple pseudopotential with applications to liquid metal structure factor calculations , 1990 .

[27]  Warren,et al.  Magnetic susceptibility of Cs and Rb from the vapor to the liquid phase. , 1993, Physical review. B, Condensed matter.

[28]  J. M. Rowe,et al.  Short-Wavelength Collective Excitations in Liquid Rubidium Observed by Coherent Neutron Scattering , 1974 .

[29]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[30]  F. Shimojo,et al.  Dynamic structure of expanded liquid rubidium from a molecular-dynamics simulation , 2000 .

[31]  Evidence of short-time dynamical correlations in simple liquids. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  L. Hove Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles , 1954 .

[33]  W. J. Stevens,et al.  Effective core potentials and accurate energy curves for Cs2 and other alkali diatomics , 1990 .

[34]  F. Hensel,et al.  The Dynamic Structure Factor of Expanded Liquid Rubidium , 1991 .

[35]  L. Yang,et al.  Monatomic-Molecular Transition in Expanded Rubidium , 1997 .

[36]  A. Torcini,et al.  Single-particle dynamics in simple liquids , 1995 .

[37]  Density fluctuations in molten lithium: inelastic x-ray scattering study , 2000 .

[38]  H. Sinn,et al.  COHERENT DYNAMIC STRUCTURE FACTOR OF LIQUID LITHIUM BY INELASTIC X-RAY SCATTERING , 1997 .

[39]  F. Frank Supercooling of liquids , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  F. Mezei Neutron spin echo: A new concept in polarized thermal neutron techniques , 1972 .

[41]  N. Ashcroft Electron-ion pseudopotentials in metals☆ , 1966 .

[42]  Raymond D. Mountain,et al.  Spectral Distribution of Scattered Light in a Simple Fluid , 1966 .

[43]  B. Cabral,et al.  First-principles molecular dynamics of liquid rubidium at low density , 2004 .

[44]  Russell J. Hemley,et al.  Ultrahigh-pressure transitions in solid hydrogen , 1994 .

[45]  R. Boehler,et al.  New anvil designs in diamond-cells , 2004 .

[46]  J. Hubbard,et al.  Collective motion in liquids , 1969 .

[47]  F. Hensel,et al.  The metal-non-metal transition and the dynamic structure factor of expanded fluid alkali metals , 1993 .

[48]  J. Kress,et al.  Ab initio molecular dynamics of expanded liquid sodium , 1998 .

[49]  C. Morkel,et al.  Density Dependence of the Interrelation between Single Particle Motion and the Collective Dynamics in Liquid Sodium , 2003 .

[50]  P. D. Gennes Liquid dynamics and inelastic scattering of neutrons , 1959 .

[51]  Price,et al.  Persistence of well-defined collective excitations in a molten transition metal , 2000, Physical Review Letters.

[52]  Lin H. Yang,et al.  Molecular aggregation in expanded liquid rubidium , 1999 .

[53]  Torcini,et al.  Liquid alkali metals at the melting point: Structural and dynamical properties. , 1993, Physical Review B (Condensed Matter).

[54]  H. Capellmann,et al.  The XYZ-Difference Method with Polarized Neutrons and the Separation of Coherent, Spin Incoherent, and Magnetic Scattering Cross Sections in a Multidetector† , 1993 .

[55]  Wood,et al.  Self-diffusion coefficient for the hard-sphere fluid. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[56]  Dorner,et al.  Collective dynamics in liquid cesium near the melting point. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[57]  B. Alder,et al.  Decay of the Velocity Autocorrelation Function , 1970 .

[58]  A. Rahman Density fluctuations in liquid rubidium. II. Molecular-dynamics calculations , 1974 .

[59]  K. Utsumi,et al.  Analytic expressions for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities , 1981 .

[60]  Morkel,et al.  Zero-sound-like modes in simple liquid metals. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  A. Zippelius,et al.  Incoherent scattering functionSs(q,ω)for classical liquids , 1976 .

[62]  R. Pecora Dynamic Light Scattering , 1985 .

[63]  F. Demmel,et al.  Propagating particle density fluctuations in molten NaCl , 2004 .

[64]  Harald Sinn,et al.  Temperature dependence of collective modes in liquid sodium , 1999 .

[65]  W. Freyland Magnetic susceptibility of metallic and nonmetallic expanded fluid cesium , 1979 .

[66]  A. Alatas,et al.  Source and optics considerations for new generation high-resolution inelastic X-ray spectrometers , 2001 .

[67]  F. Demmel,et al.  Collective motion in liquid rubidium at increasing temperatures , 1999 .

[68]  F. Shimojo,et al.  Dynamical Correlation Functions and Memory Functions of Liquid Sodium : a Molecular Dynamics Simulation , 1994 .

[69]  B. Dorner,et al.  An instrument with very high energy resolution in X-ray scattering , 1983 .

[70]  L. Sjogren,et al.  Incoherent scattering function in simple classical liquids , 1982 .

[71]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[72]  T. Ishikawa,et al.  Early commissioning of the SPring-8 beamline for high resolution inelastic X-ray scattering , 2001 .

[73]  G. Ruocco,et al.  Microscopic dynamics in liquid metals: The experimental point of view , 2005, cond-mat/0503677.

[74]  S. W. Lovesey,et al.  Theory of neutron scattering from condensed matter , 1984 .

[75]  S. Hosokawa,et al.  High-pressure vessel for elastic and inelastic x-ray diffraction experiments for liquids over a wide temperature range , 2001 .

[76]  M. Ernst,et al.  Self-diffusion beyond Fick's law , 1979 .

[77]  J. Loef Atomic and electronic transport properties and the molar volume of monatomic liquids , 1974 .

[78]  Mills,et al.  Optical studies of nitrogen to 130 GPa. , 1985, Physical review letters.

[79]  M. Tosi,et al.  Lattice Dynamics of Alkali Metals in the Self-Consistent Screening Theory , 1970 .

[80]  C. Petrillo,et al.  Neutron scattering investigation of low-momentum collective ion dynamics in liquid potassium , 2003 .

[81]  U. Balucani,et al.  Evolution of bond-angle distribution from liquid to glassy states , 1990 .

[82]  F. Demmel,et al.  The temperature dependence of the shear modulus in the simple liquid rubidium , 2000 .

[83]  M. Canales,et al.  Dynamic properties of simple liquids: Dependence on the softness of the potential core , 1999 .

[84]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[85]  P. Verkerk Dynamics in liquids , 2001 .

[86]  U. Balucani,et al.  Diffusion in ordinary and supercooled liquids , 1990 .

[87]  N. Nachtrieb,et al.  Self‐Diffusion of Liquid Sodium , 1955 .

[88]  C. Petrillo,et al.  Neutron investigation of collective excitations in liquid K-Cs alloys: the role of the electron density. , 2000, Physical review letters.