Improved estimators for a general class of beta regression models

In this article, we extend the beta regression model proposed by Ferrari and Cribari-Neto (2004), which is generally useful in situations where the response is restricted to the standard unit interval in two different ways: we let the regression structure to be nonlinear, and we allow a regression structure for the precision parameter (which may also be nonlinear). We derive general formulae for second order biases of the maximum likelihood estimators and use them to define bias-corrected estimators. Our formulae generalize the results obtained by Ospina et al. (2006), and are easily implemented by means of supplementary weighted linear regressions. We compare, by simulation, these bias-corrected estimators with three different estimators which are also bias-free to second order: one analytical, and two based on bootstrap methods. The simulation also suggests that one should prefer to estimate a nonlinear model, which is linearizable, directly in its nonlinear form. Our results additionally indicate that, whenever possible, dispersion covariates should be considered during the selection of the model, as we exemplify with two empirical applications. Finally, we also present simulation results on confidence intervals.

[1]  Klaus L. P. Vasconcellos,et al.  SECOND-ORDER ASYMPTOTICS FOR SCORE TESTS IN HETEROSKEDASTIC t REGRESSION MODELS , 2002 .

[2]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[3]  Turalay Kenc,et al.  Ox: An Object-Oriented Matrix Language , 1997 .

[4]  R. Park Estimation with Heteroscedastic Error Terms , 1966 .

[5]  B. McCullough,et al.  Regression analysis of variates observed on (0, 1): percentages, proportions and fractions , 2003 .

[6]  M. Kendall Theoretical Statistics , 1956, Nature.

[7]  Chih-Ling Tsai,et al.  Bias in nonlinear regression , 1986 .

[8]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[9]  D. Botter,et al.  Improved estimators for generalized linear models with dispersion covariates , 1998 .

[10]  Francisco Cribari-Neto,et al.  Improved maximum likelihood estimation in a new class of beta regression models , 2005 .

[11]  G. Cordeiro,et al.  Bartlett corrections for generalized linear models with dispersion covariates , 1997 .

[12]  James G. MacKinnon,et al.  Approximate bias correction in econometrics , 1998 .

[13]  Francisco Cribari-Neto,et al.  Improved point and interval estimation for a beta regression model , 2006, Comput. Stat. Data Anal..

[14]  Gauss M. Cordeiro,et al.  Improved likelihood ratio statistics for exponential family nonlinear models , 1989 .

[15]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[16]  Francisco Cribari-Neto,et al.  Nearly Unbiased Maximum Likelihood Estimation for the Beta Distribution , 2002 .

[17]  C. Borror Generalized Linear Models and Extensions, Second Edition , 2008 .

[18]  D. Lawley A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA , 1956 .

[19]  A. Verbyla,et al.  Modelling Variance Heterogeneity: Residual Maximum Likelihood and Diagnostics , 1993 .

[20]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[21]  D. Firth Bias reduction of maximum likelihood estimates , 1993 .

[22]  Francisco Cribari-Neto,et al.  Bias-corrected maximum likelihood estimation for the beta distribution , 1997 .

[23]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[24]  Philip Paolino,et al.  Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables , 2001, Political Analysis.

[25]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[26]  Ananda Sen,et al.  The Theory of Dispersion Models , 1997, Technometrics.

[27]  M. Galea,et al.  Heteroscedastic symmetrical linear models , 2007 .

[28]  J. Witmer,et al.  Nonlinear Regression Modeling. , 1984 .

[29]  M. Pike,et al.  Bias and efficiency in logistic analyses of stratified case-control studies. , 1980, International journal of epidemiology.

[30]  Gordon K. Smyth,et al.  Generalized linear models with varying dispersion , 1989 .

[31]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[32]  P. McCullagh,et al.  Bias Correction in Generalized Linear Models , 1991 .

[33]  David Ruppert,et al.  On Robust Tests for Heteroscedasticity , 1981 .

[34]  A. Harvey Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .

[35]  A. Verbyla,et al.  Joint modelling of location and scale parameters of the t distribution , 2004 .

[36]  D. Cox,et al.  A General Definition of Residuals , 1968 .

[37]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .