Improved estimators for a general class of beta regression models
暂无分享,去创建一个
[1] Klaus L. P. Vasconcellos,et al. SECOND-ORDER ASYMPTOTICS FOR SCORE TESTS IN HETEROSKEDASTIC t REGRESSION MODELS , 2002 .
[2] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[3] Turalay Kenc,et al. Ox: An Object-Oriented Matrix Language , 1997 .
[4] R. Park. Estimation with Heteroscedastic Error Terms , 1966 .
[5] B. McCullough,et al. Regression analysis of variates observed on (0, 1): percentages, proportions and fractions , 2003 .
[6] M. Kendall. Theoretical Statistics , 1956, Nature.
[7] Chih-Ling Tsai,et al. Bias in nonlinear regression , 1986 .
[8] William H. Press,et al. The Art of Scientific Computing Second Edition , 1998 .
[9] D. Botter,et al. Improved estimators for generalized linear models with dispersion covariates , 1998 .
[10] Francisco Cribari-Neto,et al. Improved maximum likelihood estimation in a new class of beta regression models , 2005 .
[11] G. Cordeiro,et al. Bartlett corrections for generalized linear models with dispersion covariates , 1997 .
[12] James G. MacKinnon,et al. Approximate bias correction in econometrics , 1998 .
[13] Francisco Cribari-Neto,et al. Improved point and interval estimation for a beta regression model , 2006, Comput. Stat. Data Anal..
[14] Gauss M. Cordeiro,et al. Improved likelihood ratio statistics for exponential family nonlinear models , 1989 .
[15] S. Weisberg,et al. Diagnostics for heteroscedasticity in regression , 1983 .
[16] Francisco Cribari-Neto,et al. Nearly Unbiased Maximum Likelihood Estimation for the Beta Distribution , 2002 .
[17] C. Borror. Generalized Linear Models and Extensions, Second Edition , 2008 .
[18] D. Lawley. A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA , 1956 .
[19] A. Verbyla,et al. Modelling Variance Heterogeneity: Residual Maximum Likelihood and Diagnostics , 1993 .
[20] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[21] D. Firth. Bias reduction of maximum likelihood estimates , 1993 .
[22] Francisco Cribari-Neto,et al. Bias-corrected maximum likelihood estimation for the beta distribution , 1997 .
[23] David Hinkley,et al. Bootstrap Methods: Another Look at the Jackknife , 2008 .
[24] Philip Paolino,et al. Maximum Likelihood Estimation of Models with Beta-Distributed Dependent Variables , 2001, Political Analysis.
[25] S. Ferrari,et al. Beta Regression for Modelling Rates and Proportions , 2004 .
[26] Ananda Sen,et al. The Theory of Dispersion Models , 1997, Technometrics.
[27] M. Galea,et al. Heteroscedastic symmetrical linear models , 2007 .
[28] J. Witmer,et al. Nonlinear Regression Modeling. , 1984 .
[29] M. Pike,et al. Bias and efficiency in logistic analyses of stratified case-control studies. , 1980, International journal of epidemiology.
[30] Gordon K. Smyth,et al. Generalized linear models with varying dispersion , 1989 .
[31] P. McCullagh,et al. Generalized Linear Models , 1992 .
[32] P. McCullagh,et al. Bias Correction in Generalized Linear Models , 1991 .
[33] David Ruppert,et al. On Robust Tests for Heteroscedasticity , 1981 .
[34] A. Harvey. Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .
[35] A. Verbyla,et al. Joint modelling of location and scale parameters of the t distribution , 2004 .
[36] D. Cox,et al. A General Definition of Residuals , 1968 .
[37] F. A. Seiler,et al. Numerical Recipes in C: The Art of Scientific Computing , 1989 .