Interfacing quantum-optical and solid-state qubits.

We present a generic model of coupling quantum-optical and solid-state qubits, and the corresponding transfer protocols. The example discussed is a trapped ion coupled to a charge qubit (e.g., Cooper pair box). To enhance the coupling and to achieve compatibility between the different experimental setups we introduce a superconducting cavity as the connecting element.

[1]  Wineland,et al.  Quantum-limited cooling and detection of radio-frequency oscillations by laser-cooled ions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[2]  Gert-Ludwig Ingold,et al.  Quantum Brownian motion: The functional integral approach , 1988 .

[3]  M. Lukin,et al.  Capacitive coupling of atomic systems to mesoscopic conductors. , 2003, Physical review letters.

[4]  M. Blencowe,et al.  Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. , 2002, Physical review letters.

[5]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[6]  Yu. A. Pashkin,et al.  Quantum oscillations in two coupled charge qubits , 2002, Nature.

[7]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[8]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[9]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[10]  J. E. Mooij,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[11]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[12]  J. Ignacio Cirac,et al.  New frontiers in quantum information with atoms and ions , 2004 .

[13]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[14]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[15]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[16]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[17]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[18]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[19]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[20]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[21]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[22]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[23]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[24]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[25]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.