Robust Monte Carlo methods for light transport simulation

Light transport algorithms generate realistic images by simulating the emission and scattering of light in an artificial environment. Applications include lighting design, architecture, and computer animation, while related engineering disciplines include neutron transport and radiative heat transfer. The main challenge with these algorithms is the high complexity of the geometric, scattering, and illumination models that are typically used. In this dissertation, we develop new Monte Carlo techniques that greatly extend the range of input models for which light transport simulations are practical. Our contributions include new theoretical models, statistical methods, and rendering algorithms. We start by developing a rigorous theoretical basis for bidirectional light transport algorithms (those that combine direct and adjoint techniques). First, we propose a linear operator formulation that does not depend on any assumptions about the physical validity of the input scene. We show how to obtain mathematically correct results using a variety of bidirectional techniques. Next we derive a different formulation, such that for any physically valid input scene, the transport operators are symmetric. This symmetry is important for both theory and implementations, and is based on a new reciprocity condition that we derive for transmissive materials. Finally, we show how light transport can be formulated as an integral over a space of paths. This framework allows new sampling and integration techniques to be applied, such as the Metropolis sampling algorithm. We also use this model to investigate the limitations of unbiased Monte Carlo methods, and to show that certain kinds of paths cannot be sampled. Our statistical contributions include a new technique called multiple importance sampling, which can greatly increase the robustness of Monte Carlo integration. It uses more than one sampling technique to evaluate an integral, and then combines these samples in a

[1]  H. J. McNicholas Absolute methods in reflectometry , 1928 .

[2]  E. A. Milne Thermodynamics of the stars , 1930 .

[3]  Parry. Moon,et al.  The scientific basis of illuminating engineering , 1936 .

[4]  M. Minnaert The reciprocity principle in lunar photometry , 1941 .

[5]  B. Salzberg A Note on the Significance of Power Reflection , 1948 .

[6]  F. Yates,et al.  Sampling Methods for Censuses and Surveys , 1950, The Mathematical Gazette.

[7]  C. Fragstein Energieübergang an der Grenze zweier absorbierender Medien mit einer Anwendung auf die Wärmestrahlung in absorbierenden Körpern , 1950 .

[8]  K. A. Bush Orthogonal Arrays of Index Unity , 1952 .

[9]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[10]  R. C. Bose,et al.  Orthogonal Arrays of Strength two and three , 1952 .

[11]  R. Jones On Reversibility and Irreversibility in Optics , 1953 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  N. Kampen,et al.  Quantum statistics of irreversible processes , 1954 .

[14]  E. Wigner Derivations of Onsager’s Reciprocal Relations , 1954 .

[15]  H. D. Patterson The Errors of Lattice Sampling , 1954 .

[16]  J. Devos Evaluation of the quality of a blackbody , 1954 .

[17]  D. Saxon Tensor Scattering Matrix for the Electromagnetic Field , 1955 .

[18]  C. Fragstein Ist eine Lichtbewegung Stets Umkehrbar , 1955 .

[19]  N. A. Finkelstein,et al.  Light Calculations and Measurements , 1956 .

[20]  K. Case Transfer Problems and the Reciprocity Principle , 1957 .

[21]  Angus E. Taylor Introduction to functional analysis , 1959 .

[22]  A. T. Hoop A reciprocity theorem for the electromagnetic field scattered by an obstacle , 1960 .

[23]  O. Kempthorne,et al.  Some Main-Effect Plans and Orthogonal Arrays of Strength Two , 1961 .

[24]  I. Šantavý On the Reversibility of Light Beams in Conducting Media , 1961 .

[25]  Z. Knittl The Principle of Reversibility and Thin Film Optics , 1962 .

[26]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[27]  H. Barlow The Scientific Basis of Illuminating Engineering , 1963 .

[28]  S. D. Groot,et al.  On the Development of Nonequilibrium Thermodynamics , 1963 .

[29]  E. T. D. L. Perrelle,et al.  The measurements of absorptivity and reflectivity , 1963 .

[30]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[31]  F. E. Nicodemus Directional Reflectance and Emissivity of an Opaque Surface , 1965 .

[32]  J. Lewins Importance, the adjoint function : the physical basis of the variational and perturbation theory in transport and diffusion problems , 1965 .

[33]  W. Reiher Hammersley, J. M., D. C. Handscomb: Monte Carlo Methods. Methuen & Co., London, and John Wiley & Sons, New York, 1964. VII + 178 S., Preis: 25 s , 1966 .

[34]  W. Rudin Real and complex analysis , 1968 .

[35]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[36]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[37]  Arthur Appel,et al.  Some techniques for shading machine renderings of solids , 1968, AFIPS Spring Joint Computing Conference.

[38]  S. Liebes Brightness—On the Ray Invariance of B/n2 , 1969 .

[39]  J. Hovenier Symmetry Relationships for Scattering of Polarized Light in a Slab of Randomly Oriented Particles , 1969 .

[40]  R. Fisher Statistical Methods for Research Workers , 1971 .

[41]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[42]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[43]  W. H. Steel Luminosity, throughput, or etendue? , 1974, Applied optics.

[44]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[45]  E. Nicodemus Self-study manual on optical radiation measurements , 1976 .

[46]  James F. Blinn,et al.  Simulation of wrinkled surfaces , 1978, SIGGRAPH.

[47]  WhittedTurner An improved illumination model for shaded display , 1979 .

[48]  William W. L. Chen On irregularities of distribution. , 1980 .

[49]  Van de Hulst,et al.  Multiple Light Scattering: Tables, Formulas, and Applications , 1980 .

[50]  K. Gustafson Introduction to Partial Differential Equations and Hilbert Space Methods , 1980 .

[51]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[52]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[53]  B. Efron,et al.  The Jackknife Estimate of Variance , 1981 .

[54]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[55]  Jesper Lützen The prehistory of the theory of distributions , 1984 .

[56]  正忠 小笠原 J. J. Duderstadt and G. A. Moses: Inertial Confinement Fusion, John Wiley & Sons, New York, 1982, x+347ページ, 24×17cm, 16,000円. , 1983 .

[57]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[58]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[59]  J. Peřina Coherence of light , 1985 .

[60]  Samuel P. Uselton,et al.  Statistically optimized sampling for distributed ray tracing , 1985, SIGGRAPH.

[61]  L. Delves,et al.  Computational methods for integral equations: Frontmatter , 1985 .

[62]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[63]  A. Hibbs QED: The Strange Theory of Light and Matter , 1986 .

[64]  Donald P. Greenberg,et al.  An Efficient Radiosity Approach for Realistic Image Synthesis , 1986, IEEE Computer Graphics and Applications.

[65]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[66]  Gilbert Strang,et al.  Introduction to applied mathematics , 1988 .

[67]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[68]  John M. Snyder,et al.  Ray tracing complex models containing surface tessellations , 1987, SIGGRAPH.

[69]  Theory of Reflection of Electromagnetic and Particle Waves , 1987, December.

[70]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[71]  Donald P. Greenberg,et al.  A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods , 1987, SIGGRAPH.

[72]  N. G. Cooper Los Alamos Science Number 15: Special Issue on Stanislaw Ulam 1909 - 1984 , 1987 .

[73]  Kenneth E. Torrance,et al.  The zonal method for calculating light intensities in the presence of a participating medium , 1987, SIGGRAPH.

[74]  Werner Purgathofer,et al.  A statistical method for adaptive stochastic sampling , 1986, Comput. Graph..

[75]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[76]  Roman Kuchkuda,et al.  An introduction to ray tracing , 1993, Comput. Graph..

[77]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[78]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[79]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[80]  Holly Rushmeier,et al.  Realistic image synthesis for scenes with radiatively participating media , 1988 .

[81]  Roy Hall,et al.  Illumination and Color in Computer Generated Imagery , 1988, Monographs in Visual Communication.

[82]  Claude Puech,et al.  A general two-pass method integrating specular and diffuse reflection , 1989, SIGGRAPH '89.

[83]  J. Painter,et al.  Antialiased ray tracing by adaptive progressive refinement , 1989, SIGGRAPH.

[84]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[85]  Peter Shirley,et al.  A ray tracing method for illumination calculation in diffuse-specular scenes , 1990 .

[86]  Paul S. Heckbert Adaptive radiosity textures for bidirectional ray tracing , 1990, SIGGRAPH.

[87]  James Arvo,et al.  Particle transport and image synthesis , 1990, SIGGRAPH.

[88]  R. Ambartzumian Factorization calculus and geometric probability , 1990 .

[89]  Kenneth E. Torrance,et al.  Extending the radiosity method to include specularly reflecting and translucent materials , 1990, TOGS.

[90]  James Arvo,et al.  Unbiased sampling techniques for image synthesis , 1991, SIGGRAPH.

[91]  Pat Hanrahan,et al.  A rapid hierarchical radiosity algorithm , 1991, SIGGRAPH.

[92]  Peter Shirley,et al.  Discrepancy as a Quality Measure for Sample Distributions , 1991, Eurographics.

[93]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[94]  P. Heckbert Simulating Global Illumination Using Adaptive Meshing , 1991 .

[95]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[96]  Peter Shirley,et al.  Physically based lighting calculations for computer graphics , 1991 .

[97]  Holly E. Rushmeier,et al.  A progressive multi-pass method for global illumination , 1991, SIGGRAPH.

[98]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[99]  David Salesin,et al.  An importance-driven radiosity algorithm , 1992, SIGGRAPH.

[100]  Paul S. Wang,et al.  Distribution Ray Tracing: Theory and Practice , 1992 .

[101]  Dani Lischinski,et al.  Discontinuity meshing for accurate radiosity , 1992, IEEE Computer Graphics and Applications.

[102]  M. A. Al-Gwaiz Theory of distributions , 1992 .

[103]  Rory A. Fisher,et al.  The Arrangement of Field Experiments , 1992 .

[104]  Pat Hanrahan,et al.  Illumination from curved reflectors , 1992, SIGGRAPH.

[105]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[106]  Sumanta N. Pattanaik,et al.  Efficient potential equation solutions for global illumination computation , 1993, Comput. Graph..

[107]  Mark S. Peercy,et al.  Linear color representations for full speed spectral rendering , 1993, SIGGRAPH.

[108]  T. DeRose,et al.  A Continuous Adjoint Formulation for Radiance Transport , 1993 .

[109]  Pat Hanrahan,et al.  A hierarchical illumination algorithm for surfaces with glossy reflection , 1993, SIGGRAPH.

[110]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[111]  Michael F. Cohen,et al.  Radiosity and realistic image synthesis , 1993 .

[112]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[113]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[114]  Gary W. Meyer,et al.  Wavelength dependent reflectance functions , 1994, SIGGRAPH.

[115]  Pat Hanrahan,et al.  Textures and radiosity: controlling emission and reflection with texture maps , 1994, SIGGRAPH.

[116]  Yves D. Willems,et al.  A Theoretical Framework for Physically Based Rendering , 1994, Comput. Graph. Forum.

[117]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[118]  James Arvo,et al.  A clustering algorithm for radiosity in complex environments , 1994, SIGGRAPH.

[119]  James Arvo,et al.  A framework for the analysis of error in global illumination algorithms , 1994, SIGGRAPH.

[120]  W. Mccluney Introduction to Radiometry and Photometry , 1994 .

[121]  A. Owen Lattice Sampling Revisited: Monte Carlo Variance of Means Over Randomized Orthogonal Arrays , 1994 .

[122]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[123]  Peter Shirley,et al.  Multi-Jittered Sampling , 1994, Graphics Gems.

[124]  J. Doug Tygar,et al.  Computability and complexity of ray tracing , 1994, Discret. Comput. Geom..

[125]  Yves D. Willems,et al.  A 5D Tree to Reduce the Variance of Monte Carlo Ray Tracing , 1995, Rendering Techniques.

[126]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[127]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[128]  Yves D. Willems,et al.  Reducing the number of shadow rays in bidirectional path tracing , 1995 .

[129]  Yves D. Willems,et al.  Potential-driven Monte Carlo Particle Tracing for Diffuse Environments with Adaptive Probability Functions , 1995, Rendering Techniques.

[130]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[131]  Henrik Wann Jensen,et al.  Importance Driven Path Tracing using the Photon Map , 1995, Rendering Techniques.

[132]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[133]  J. Arvo Analytic methods for simulated light transport , 1995 .

[134]  P. Hanrahan,et al.  Wavelet Methods for Radiance Computations , 1995 .

[135]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[136]  Pat Hanrahan,et al.  A realistic camera model for computer graphics , 1995, SIGGRAPH.

[137]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[138]  Brigitta Lange,et al.  Rayvolution: An Evolutionary Ray Tracing Algorithm , 1995 .

[139]  Richard M. Karp,et al.  An optimal algorithm for Monte Carlo estimation , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[140]  Sumanta N. Pattanaik,et al.  Adjoint equations and random walks for illumination computation , 1995, TOGS.

[141]  A. Glassner A Model for Fluorescence and Phosphorescence , 1995 .

[142]  Richard J. Anderson Tree data structures for N-body simulation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[143]  David Salesin,et al.  Global illumination of glossy environments using wavelets and importance , 1996, TOGS.

[144]  Alexander Keller Quasi-Monte Carlo Radiosity , 1996, Rendering Techniques.

[145]  Eric Veach,et al.  Non-symmetric Scattering in Light Transport Algorithms , 1996, Rendering Techniques.

[146]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[147]  Jos Stam,et al.  Ray Tracing in Non-Constant Media , 1996, Rendering Techniques.

[148]  A. Owen Scrambled net variance for integrals of smooth functions , 1997 .

[149]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[150]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[151]  Steven W. Zucker,et al.  What is a light source? , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[152]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[153]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1998 .