Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM
暂无分享,去创建一个
F. Chinesta | F. J. Fuenmayor | O. A. González-Estrada | O. González-Estrada | F. Chinesta | F. Fuenmayor | J. Ródenas | J. J. Ródenas | Francisco Chinesta
[1] I. Babuska,et al. Finite Element Analysis , 2021 .
[2] Daniel Rixen,et al. Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm , 1998 .
[3] Nils-Erik Wiberg,et al. Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .
[4] Peter Bettess,et al. Notes on mesh optimal criteria in adaptive finite element computations , 1995 .
[5] G. B. Sinclair. Logarithmic stress singularities resulting from various boundary conditions in angular corners of plates in extension , 1999 .
[6] T. Belytschko,et al. Finite element derivative recovery by moving least square interpolants , 1994 .
[7] Pierre Ladevèze,et al. Strict bounds for computed stress intensity factors , 2009 .
[8] G. Ventura. On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .
[9] Pedro Díez,et al. Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error , 2007 .
[10] Marc Duflot,et al. Derivative recovery and a posteriori error estimate for extended finite elements , 2007 .
[11] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[12] Eugenio Giner,et al. Enhanced blending elements for XFEM applied to linear elastic fracture mechanics , 2009 .
[13] Brian Moran,et al. Energy release rate along a three-dimensional crack front in a thermally stressed body , 1986, International Journal of Fracture.
[14] J. P. Moitinho de Almeida,et al. Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems , 2006 .
[15] T. Belytschko,et al. On the construction of blending elements for local partition of unity enriched finite elements , 2003 .
[16] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[17] T. Belytschko,et al. Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods , 2008 .
[18] S. Bordas,et al. A posteriori error estimation for extended finite elements by an extended global recovery , 2008 .
[19] Ted Belytschko,et al. Elastic crack growth in finite elements with minimal remeshing , 1999 .
[20] Pierre Ladevèze,et al. Local error estimators for finite element linear analysis , 1999 .
[21] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[22] Eugenio Giner,et al. Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics , 2005 .
[23] P. Wriggers,et al. Error estimation for crack simulations using the XFEM , 2012 .
[24] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[25] B. L. Karihaloo,et al. Statically Admissible Stress Recovery using the Moving Least Squares Technique , 2004 .
[26] Bhushan Lal Karihaloo,et al. Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery , 2006 .
[27] O. González-Estrada,et al. Accurate recovery-based upper error bounds for the extended finite element framework , 2010 .
[28] T. Fries. A corrected XFEM approximation without problems in blending elements , 2008 .
[29] Mark S. Shephard,et al. An algorithm for multipoint constraints in finite element analysis , 1979 .
[30] Ivo Babuška,et al. A posteriori error estimation for generalized finite element methods , 2006 .
[31] N. Moës,et al. Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .
[32] Pierre Ladevèze,et al. Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM , 2010 .
[33] Juan José Ródenas,et al. Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR‐C technique , 2007 .
[34] Juan José Ródenas,et al. A recovery‐type error estimator for the extended finite element method based on singular+smooth stress field splitting , 2008 .
[35] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[36] Antonio Huerta,et al. Pseudo-divergence-free element free Galerkin method for incompressible fluid flow , 2004 .
[37] L. J. Sluys,et al. Error estimation and adaptivity for discontinuous failure , 2009 .
[38] Sundararajan Natarajan,et al. Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework , 2010, 1107.4732.
[39] Philippe Marin,et al. Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .
[40] Mark A Fleming,et al. ENRICHED ELEMENT-FREE GALERKIN METHODS FOR CRACK TIP FIELDS , 1997 .
[41] M. Williams,et al. Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension , 1952 .
[42] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[43] Ted Belytschko,et al. Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .
[44] Javier Oliver,et al. CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD , 1996 .
[45] C. Shih,et al. Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding , 1988 .
[46] Knut Morten Okstad,et al. Error estimation based on Superconvergent Patch Recovery using statically admissible stress fields , 1998 .
[47] Pierre Ladevèze,et al. An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity , 1995 .
[48] Ammed z.,et al. Application des méthodes sans maillage en mécanique de la rupture , 2011 .