Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. In the techniques based on the superconvergent patch recovery (SPR) the continuity of the recovered field is provided by the shape functions of the underlying mesh. We explore the capabilities of a recovery technique based on an MLS fitting, more flexible than SPR techniques as it directly provides continuous interpolated fields without relying on any FE mesh, to obtain estimates of the error in energy norm as an alternative to SPR. In the enhanced MLS proposed in the paper, boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results indicate the high accuracy of the proposed error.

[1]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[2]  Daniel Rixen,et al.  Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm , 1998 .

[3]  Nils-Erik Wiberg,et al.  Enhanced Superconvergent Patch Recovery incorporating equilibrium and boundary conditions , 1994 .

[4]  Peter Bettess,et al.  Notes on mesh optimal criteria in adaptive finite element computations , 1995 .

[5]  G. B. Sinclair Logarithmic stress singularities resulting from various boundary conditions in angular corners of plates in extension , 1999 .

[6]  T. Belytschko,et al.  Finite element derivative recovery by moving least square interpolants , 1994 .

[7]  Pierre Ladevèze,et al.  Strict bounds for computed stress intensity factors , 2009 .

[8]  G. Ventura On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .

[9]  Pedro Díez,et al.  Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error , 2007 .

[10]  Marc Duflot,et al.  Derivative recovery and a posteriori error estimate for extended finite elements , 2007 .

[11]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[12]  Eugenio Giner,et al.  Enhanced blending elements for XFEM applied to linear elastic fracture mechanics , 2009 .

[13]  Brian Moran,et al.  Energy release rate along a three-dimensional crack front in a thermally stressed body , 1986, International Journal of Fracture.

[14]  J. P. Moitinho de Almeida,et al.  Upper bounds of the error in local quantities using equilibrated and compatible finite element solutions for linear elastic problems , 2006 .

[15]  T. Belytschko,et al.  On the construction of blending elements for local partition of unity enriched finite elements , 2003 .

[16]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[17]  T. Belytschko,et al.  Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods , 2008 .

[18]  S. Bordas,et al.  A posteriori error estimation for extended finite elements by an extended global recovery , 2008 .

[19]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[20]  Pierre Ladevèze,et al.  Local error estimators for finite element linear analysis , 1999 .

[21]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[22]  Eugenio Giner,et al.  Error estimation for the finite element evaluation of G I and G II in mixed-mode linear elastic fracture mechanics , 2005 .

[23]  P. Wriggers,et al.  Error estimation for crack simulations using the XFEM , 2012 .

[24]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[25]  B. L. Karihaloo,et al.  Statically Admissible Stress Recovery using the Moving Least Squares Technique , 2004 .

[26]  Bhushan Lal Karihaloo,et al.  Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery , 2006 .

[27]  O. González-Estrada,et al.  Accurate recovery-based upper error bounds for the extended finite element framework , 2010 .

[28]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[29]  Mark S. Shephard,et al.  An algorithm for multipoint constraints in finite element analysis , 1979 .

[30]  Ivo Babuška,et al.  A posteriori error estimation for generalized finite element methods , 2006 .

[31]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[32]  Pierre Ladevèze,et al.  Strict and effective bounds in goal‐oriented error estimation applied to fracture mechanics problems solved with XFEM , 2010 .

[33]  Juan José Ródenas,et al.  Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR‐C technique , 2007 .

[34]  Juan José Ródenas,et al.  A recovery‐type error estimator for the extended finite element method based on singular+smooth stress field splitting , 2008 .

[35]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[36]  Antonio Huerta,et al.  Pseudo-divergence-free element free Galerkin method for incompressible fluid flow , 2004 .

[37]  L. J. Sluys,et al.  Error estimation and adaptivity for discontinuous failure , 2009 .

[38]  Sundararajan Natarajan,et al.  Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework , 2010, 1107.4732.

[39]  Philippe Marin,et al.  Accuracy and optimal meshes in finite element computation for nearly incompressible materials , 1992 .

[40]  Mark A Fleming,et al.  ENRICHED ELEMENT-FREE GALERKIN METHODS FOR CRACK TIP FIELDS , 1997 .

[41]  M. Williams,et al.  Stress Singularities Resulting From Various Boundary Conditions in Angular Corners of Plates in Extension , 1952 .

[42]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[43]  Ted Belytschko,et al.  Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .

[44]  Javier Oliver,et al.  CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD , 1996 .

[45]  C. Shih,et al.  Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding , 1988 .

[46]  Knut Morten Okstad,et al.  Error estimation based on Superconvergent Patch Recovery using statically admissible stress fields , 1998 .

[47]  Pierre Ladevèze,et al.  An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity , 1995 .

[48]  Ammed z.,et al.  Application des méthodes sans maillage en mécanique de la rupture , 2011 .