Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts

CuIn1–xGaxSe2 (CIGSe) solar cells have achieved record efficiency values as high as 22.6% for small areas, with module efficiency values of 16.5%. However, for economic viability these values must be achieved with reduced material consumption (especially indium), which requires reducing the CIGSe absorber thickness from 2000–3000 nm to below 500 nm. Soft-imprinted SiOx nanoparticles (NPs) beneath a conformal CIGSe layer enable this thickness reduction. Optically, they enhance the absorption of light through Fabry–Perot and waveguided resonances within the CIGSe layer, preventing current loss. For CIGSe solar cells on ITO with an absorber thickness of only 390 nm and a nanophotonic contact the current density (Jsc) increases from 25.7 to 32.1 mA cm−2. At the same time, the nanopatterned contact reduces the back barrier, leading to an increased open-circuit voltage (518 to 558 mV) and fill factor (50.7% to 55.2%). Combined, these effects increase the efficiency value from 6.8% to 10.0% for this initial demonstration. With the addition of an antireflection coating, the champion NP-enhanced cell achieves a Jsc of 34.0 mA cm−2, corresponding to 93% of the Jsc achieved by the thick world-record cell. This result shows that optoelectronic nanopatterning provides a path to high efficiency cells with reduced materials consumption.

[1]  M. Schmid,et al.  Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature , 2015 .

[2]  S. Nishiwaki,et al.  Electrical properties of the Cu(In,Ga)Se2/ MoSe2/Mo structure , 2001 .

[3]  A. Polman,et al.  Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography , 2011, Nanotechnology.

[4]  Thomas Kirchartz,et al.  Enhanced light trapping in thin-film solar cells by a directionally selective filter. , 2010, Optics express.

[5]  Coby S. Tao,et al.  Natural resource limitations to terawatt-scale solar cells , 2011 .

[6]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[7]  Miro Zeman,et al.  Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells. , 2016, Optics express.

[8]  Steven S. Hegedus,et al.  Thin‐film solar cells: device measurements and analysis , 2004 .

[9]  Martina Schmid,et al.  Plasmonic and photonic scattering and near fields of nanoparticles , 2014, Nanoscale Research Letters.

[10]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[11]  Mo/Cu(In, Ga)Se2 back interface chemical and optical properties for ultrathin CIGSe solar cells , 2012 .

[12]  P. Altermatt,et al.  Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3 , 2007 .

[13]  A. Aberle,et al.  Commercial white paint as back surface reflector for thin-film solar cells , 2007 .

[14]  Martina Schmid,et al.  Light absorption enhancement for ultra-thin Cu(In1−xGax)Se2 solar cells using closely packed 2-D SiO2 nanosphere arrays , 2016 .

[15]  M. Bodegård,et al.  Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance , 2003 .

[16]  Jean-Jacques Greffet,et al.  Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 μm , 2012 .

[17]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[18]  Marika Edoff,et al.  Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se $_{\bf 2}$ Solar Cells , 2014, IEEE Journal of Photovoltaics.

[19]  Martina Schmid,et al.  Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. , 2015, ACS nano.

[20]  H. Schock,et al.  Characterization of metastabilities in Cu(In,Ga)Se2 thin-film solar cells by capacitance and current-voltage spectroscopy , 2011 .

[21]  Marika Edoff,et al.  Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts , 2013 .

[22]  A. Polman,et al.  Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells , 2012 .

[23]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[24]  U. Rau,et al.  Nanoscale observation of waveguide modes enhancing the efficiency of solar cells. , 2014, Nano letters.

[25]  V. Deline,et al.  Defects in Cu(In,Ga)Se2 Chalcopyrite Semiconductors: A Comparative Study of Material Properties, Defect States, and Photovoltaic Performance , 2011 .

[26]  H. Atwater,et al.  Modeling light trapping in nanostructured solar cells. , 2011, ACS Nano.

[27]  I. Lauermann,et al.  Integration of plasmonic Ag nanoparticles as a back reflector in ultra-thin Cu(In,Ga)Se 2 solar cells , 2015 .

[28]  T. Meng,et al.  Structure and interface chemistry of MoO3 back contacts in Cu(In,Ga)Se2 thin film solar cells , 2014 .

[29]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[30]  K. Catchpole,et al.  Nanophotonic light trapping in solar cells , 2012 .

[31]  Daniel Lincot,et al.  Towards ultrathin copper indium gallium diselenide solar cells: proof of concept study by chemical etching and gold back contact engineering , 2012 .

[32]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[33]  Vasilis Fthenakis,et al.  Sustainability of photovoltaics: The case for thin-film solar cells , 2009 .

[34]  Dimitrios Hariskos,et al.  Verification of phototransistor model for Cu(In,Ga)Se2 solar cells , 2015 .

[35]  Kihwan Kim,et al.  Improved Performance of Ultrathin Cu(InGa)Se$_{\bf 2}$ Solar Cells With a Backwall Superstrate Configuration , 2014, IEEE Journal of Photovoltaics.

[36]  J. Sites,et al.  Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells , 2005 .

[37]  T. Nakada,et al.  Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts , 2004 .

[38]  M. Schmid,et al.  The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films , 2013 .

[39]  Harry A. Atwater,et al.  Plasmonic light trapping in thin-film Si solar cells , 2012 .

[40]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[41]  Ting-Shiuan Jiang,et al.  Electrical impact of MoSe2 on CIGS thin-film solar cells. , 2013, Physical chemistry chemical physics : PCCP.