Is electrical noise useful? [Point of View]

The proposition that electrical noise could be useful is anathema to the designers of electronics and communication systems, who usually have a mission to eradicate as much noise as possible. One needs to look outside the parameters of conventional assumptions and perspectives for situations where electrical noise can be useful. Two topics are sufficient to illustrate affirmative answers to the posed question are stochastic resonance and dithering. Electrical noise is usually modeled by random variables. A second perspective that is quite different from the first is that randomness can be useful, and that electrical noise may be a useful source of randomness.

[1]  Bernard Widrow,et al.  Dithering for Floating-Point Number Representation , 2005 .

[2]  R. L. Badzey,et al.  Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance , 2005, Nature.

[3]  N. Jayant,et al.  Digital Coding of Waveforms: Principles and Applications to Speech and Video , 1990 .

[4]  Robert Alexander Wannamaker,et al.  The Theory of Dithered Quantization , 1997 .

[5]  Pierre-Olivier Amblard,et al.  Stochastic resonance in locally optimal detectors , 2003, IEEE Trans. Signal Process..

[6]  C. Pearce,et al.  Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization , 2008 .

[7]  François Chapeau-Blondeau,et al.  Injecting noise to improve performance of optimal detector , 2007 .

[8]  J. Witzel The radiometer: a 130-year-old mystery , 2002 .

[9]  Derek Abbott,et al.  Quantization in the presence of large amplitude threshold noise , 2005 .

[10]  L. Schuchman Dither Signals and Their Effect on Quantization Noise , 1964 .

[11]  Bernard Widrow,et al.  Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications , 2008 .

[12]  Adi R. Bulsara Device physics: No-nuisance noise , 2005, Nature.

[13]  Pramod K. Varshney,et al.  Noise Enhanced Parameter Estimation , 2008, IEEE Transactions on Signal Processing.

[14]  Dario Petri,et al.  Performance of stochastic and deterministic dithered quantizers , 2000, IEEE Trans. Instrum. Meas..

[15]  Sinan Gezici,et al.  CRLB Based Optimal Noise Enhanced Parameter Estimation Using Quantized Observations , 2010, IEEE Signal Processing Letters.

[16]  Luca Gammaitoni,et al.  Stochastic resonance in multi-threshold systems , 1995 .

[17]  Derek Abbott,et al.  What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology , 2009, PLoS Comput. Biol..

[18]  Roy,et al.  Observation of stochastic resonance in a ring laser. , 1988, Physical review letters.

[19]  Mark D. McDonnell,et al.  Communication of uncoded sensor measurements through nanoscale binary-node stochastic pooling networks , 2010, Nano Commun. Networks.

[20]  C. Saloma,et al.  Noise-Enhanced Measurement of Weak Doublet Spectra with a Fourier-Transform Spectrometer and a 1-Bit Analog-to-Digital Converter. , 2001, Applied optics.

[21]  Salvatore Graziani,et al.  Measurements of parameters influencing the optimal noise level in stochastic systems , 2000, IEEE Trans. Instrum. Meas..

[22]  John Vanderkooy,et al.  A theory of nonsubtractive dither , 2000, IEEE Trans. Signal Process..

[23]  Antonio Rubio,et al.  Cell architecture for nanoelectronic design , 2007, Microelectron. J..

[24]  L. M. Ward,et al.  Stochastic resonance and sensory information processing: a tutorial and review of application , 2004, Clinical Neurophysiology.

[25]  B. Andò,et al.  Adding noise to improve measurement , 2001 .

[26]  Lawrence G. Roberts,et al.  Picture coding using pseudo-random noise , 1962, IRE Trans. Inf. Theory.

[27]  François Chapeau-Blondeau,et al.  Noise-enhanced performance for an optimal Bayesian estimator , 2004, IEEE Transactions on Signal Processing.

[28]  S. Zozor,et al.  Noise-aided processing: revisiting ditheringin a /spl Sigma//spl Delta/ quantizer , 2005, IEEE Transactions on Signal Processing.

[29]  Kurt Wiesenfeld,et al.  Controlling Stochastic Resonance , 1999 .

[30]  Carson C. Chow,et al.  Aperiodic stochastic resonance. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Ashok Patel,et al.  Optimal Noise Benefits in Neyman–Pearson and Inequality-Constrained Statistical Signal Detection , 2009, IEEE Transactions on Signal Processing.

[32]  N. Stocks,et al.  Suprathreshold stochastic resonance in multilevel threshold systems , 2000, Physical review letters.

[33]  G. Zames,et al.  Dither in nonlinear systems , 1976 .

[34]  Derek Abbott,et al.  A review of stochastic resonance: circuits and measurement , 2002, IEEE Trans. Instrum. Meas..

[35]  L. Gammaitoni,et al.  Stochastic resonance and the dithering effect in threshold physical systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Riccardo Mannella,et al.  Stochastic resonance in electrical circuits. II. Nonconventional stochastic resonance , 1999 .

[37]  B. Kosko,et al.  Adaptive stochastic resonance , 1998, Proc. IEEE.

[38]  Pramod K. Varshney,et al.  Theory of the Stochastic Resonance Effect in Signal Detection—Part II: Variable Detectors , 2007, IEEE Transactions on Signal Processing.

[39]  B. Kosko,et al.  Nanosignal processing: Stochastic resonance in carbon nanotubes that detect subthreshold signals , 2003 .

[40]  Chongwu Zhou,et al.  Noise-Enhanced Detection of Subthreshold Signals With Carbon Nanotubes , 2006, IEEE Transactions on Nanotechnology.

[41]  S. Graziani,et al.  A new IR displacement system based on noise added theory , 2001, IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No.01CH 37188).

[42]  Pierre-Olivier Amblard,et al.  On pooling networks and fluctuation in suboptimal detection framework , 2007 .

[43]  Wannamaker,et al.  Stochastic resonance as dithering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[45]  Robert M. Gray,et al.  Dithered quantizers , 1993, IEEE Trans. Inf. Theory.