Panconnectivity and edge-pancyclicity of k-ary n-cubes

In this article, we study some topological properties of k-ary n-cubes Q nk . We show that each edge in Q nk lies on a cycle of every length from k to kn. We also show that Q nk is both bipanconnected and edge-bipancyclic, where n ≥ 2 is an integer and k ≥ 2 is an even integer. © 2009 Wiley Periodicals, Inc. NETWORKS 2009 An extended abstract of this article under the title “Embedding Cycles and Paths in a k-Ary n-Cube” appeared in the 13th International Conference on Parallel and Distributed Systems (ICPADS), 2007.

[1]  Abdel Elah Al-Ayyoub,et al.  Fault Diameter of k-ary n-cube Networks , 1997, IEEE Trans. Parallel Distributed Syst..

[2]  Jun-Ming Xu,et al.  Fault-tolerant pancyclicity of augmented cubes , 2007, Inf. Process. Lett..

[3]  Jun-Ming Xu,et al.  Panconnectivity of locally twisted cubes , 2006, Appl. Math. Lett..

[4]  Yaagoub Ashir,et al.  Lee Distance and Topological Properties of k-ary n-cubes , 1995, IEEE Trans. Computers.

[5]  Jun-Ming Xu,et al.  Edge-pancyclicity and Hamiltonian laceability of the balanced hypercubes , 2007, Appl. Math. Comput..

[6]  Jun-Ming Xu,et al.  Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes , 2007, Parallel Comput..

[7]  Yaagoub Ashir,et al.  Embeddings of cycles, meshes and tori in faulty k-ary n-cubes , 1997, Proceedings 1997 International Conference on Parallel and Distributed Systems.

[8]  Jun-Ming Xu,et al.  Cycles in folded hypercubes , 2006, Appl. Math. Lett..

[9]  Jung-Heum Park Panconnectivity and edge-pancyclicity of faulty recursive circulant G(2m, 4) , 2008, Theor. Comput. Sci..

[10]  Jun-Ming Xu,et al.  Edge-fault-tolerant properties of hypercubes and folded hypercubes , 2006, Australas. J Comb..

[11]  Chun-Hua Chen,et al.  Pancyclicity on Möbius cubes with maximal edge faults , 2004, Parallel Comput..

[12]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[13]  Sun-Yuan Hsieh,et al.  Hamiltonian path embedding and pancyclicity on the Mobius cube with faulty nodes and faulty edges , 2006, IEEE Transactions on Computers.

[14]  Yaagoub Ashir,et al.  Fault-Tolerant Embeddings of Hamiltonian Circuits in k-ary n-Cubes , 2002, SIAM J. Discret. Math..

[15]  Jou-Ming Chang,et al.  Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs , 2004 .

[16]  S.G. Akl,et al.  On some properties of k-ary n-cubes , 2001, Proceedings. Eighth International Conference on Parallel and Distributed Systems. ICPADS 2001.

[17]  S. Ghozati,et al.  The k-ary n-cube network : modeling, topological properties and routing strategies , 1999 .

[18]  Deqiang Wang,et al.  Hamiltonian-like Properties of k-Ary n-Cubes , 2005, Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (PDCAT'05).

[19]  Myung M. Bae,et al.  Edge Disjoint Hamiltonian Cycles in k-Ary n-Cubes and Hypercubes , 2003, IEEE Trans. Computers.

[20]  Yukio Shibata,et al.  Pancyclicity of recursive circulant graphs , 2002, Inf. Process. Lett..

[21]  Xiaohua Jia,et al.  Node-pancyclicity and edge-pancyclicity of crossed cubes , 2005, Inf. Process. Lett..

[22]  Sun-Yuan Hsieh,et al.  Embedding cycles and paths in a k-ary n-cube , 2007, 2007 International Conference on Parallel and Distributed Systems.

[23]  Selim G. Akl Parallel computation: models and methods , 1997 .

[24]  Jun-Ming Xu,et al.  Edge-fault-tolerant edge-bipancyclicity of hypercubes , 2005, Inf. Process. Lett..

[25]  Jun-Ming Xu,et al.  Edge-pancyclicity of Möbius cubes , 2005, Inf. Process. Lett..

[26]  Sun-Yuan Hsieh,et al.  Panconnectivity and edge-pancyclicity of 3-ary N-cubes , 2007, The Journal of Supercomputing.

[27]  Mee Yee Chan,et al.  On the Existence of Hamiltonian Circuits in Faulty Hypercubes , 1991, SIAM J. Discret. Math..

[28]  Jun-Ming Xu,et al.  Paths in Möbius cubes and crossed cubes , 2006, Inf. Process. Lett..

[29]  Bing Wei,et al.  Panconnectivity of locally connected claw-free graphs , 1999, Discret. Math..