Block number, descents and Schur positivity of fully commutative elements in Bn

The distribution of Coxeter descents and block number over the set of fully commutative elements in the hyperoctahedral group $B_n$, $\FC(B_n)$, is studied in this paper. We prove that the associated Chow quasi-symmetric generating function is equal to a non-negative sum of products of two Schur functions. The proof involves a decomposition of $\FC(B_n)$ into a disjoint union of two-sided Barbash-Vogan combinatorial cells, a type $B$ extension of Rubey's descent preserving involution on $321$-avoiding permutations and a detailed study of the intersection of $\FC(B_n)$ with $S_n$-cosets which yields a new decomposition of $\FC(B_n)$ into disjoint subsets called fibers. We also compare two different type $B$ Schur-positivity notions, arising from works of Chow and Poirier

[1]  Dennis E. White,et al.  A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.

[2]  Müge Taskin Plactic relations for r-domino tableaux , 2012, Electron. J. Comb..

[3]  A. N. Kirillov,et al.  SERIES GENERATRICES POUR LES TABLEAUX DE DOMINOS , 1994 .

[4]  I. Gessel Multipartite P-partitions and inner products of skew Schur functions , 1983 .

[5]  Riccardo Biagioli,et al.  Fully commutative elements in finite and affine Coxeter groups , 2014 .

[6]  Compositio Mathematica,et al.  On the classification of primitive ideals for complex classical Lie algebras, II , 2018 .

[7]  Chak-On Chow Noncommutative symmetric functions of type B , 2001 .

[8]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[9]  Dan Barbasch,et al.  Primitive ideals and orbital integrals in complex classical groups , 1982 .

[10]  On Domino Insertion and Kazhdan–Lusztig Cells in Type Bn , 2006, math/0609279.

[11]  John R. Stembridge The Enumeration of Fully Commutative Elements of Coxeter Groups , 1998 .

[12]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[13]  M. Bóna,et al.  Handbook of Enumerative Combinatorics , 2015 .

[14]  Curtis Greene,et al.  An Extension of Schensted's Theorem , 1974 .

[15]  Sabrina Hirsch,et al.  Reflection Groups And Coxeter Groups , 2016 .

[16]  R. Stanley The Descent Set and Connectivity Set of a Permutation , 2005, math/0507224.

[17]  C. Kenneth Fan,et al.  A Hecke algebra quotient and properties of commutative elements of a Weyl group , 1995 .

[18]  Block decomposition of permutations and Schur-positivity , 2016, 1611.06979.

[19]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[20]  R. Green,et al.  Fully commutative Kazhdan-Lusztig cells , 2001, math/0102003.

[21]  Ekaterina A. Vassilieva,et al.  A new link between the descent algebra of type B, domino tableaux and Chow's quasisymmetric functions , 2019, Discret. Math..

[22]  Stéphane Poirier,et al.  Cycle type and descent set in wreath products , 1998, Discret. Math..

[23]  Martin Rubey An involution on Dyck paths that preserves the rise composition and interchanges the number of returns and the position of the first double fall , 2017, 1701.07009.

[24]  Yuval Roichman,et al.  Standard Young Tableaux , 2015 .

[25]  John R. Stembridge,et al.  Some combinatorial aspects of reduced words in finite Coxeter groups , 1997 .

[26]  G. Wild Alain , 2020, Kindlers Literatur Lexikon (KLL).

[27]  J. Stembridge On the fully commutative elements of Coxeter groups , 1996 .

[28]  Sergi Elizalde,et al.  Character formulas and descents for the hyperoctahedral group , 2017, Adv. Appl. Math..

[29]  Richard P. Stanley,et al.  Some Combinatorial Properties of Schubert Polynomials , 1993 .

[30]  G. Viennot Heaps of Pieces, I: Basic Definitions and Combinatorial Lemmas , 1989 .

[31]  T. Kyle Petersen A Note on Three Types of Quasisymmetric Functions , 2005, Electron. J. Comb..

[32]  Bernard Leclerc,et al.  Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts , 1995 .